DOI QR코드

DOI QR Code

괭생이 모자반 추출물의 소포체 스트레스 억제 효능

Inhibitory effects of Sargassum horneri extract against endoplasmic reticulum stress in HepG2 cells

  • Park, Sora (Department of Food and Nutrition, Chungnam National University) ;
  • Thomas, Shalom Sara (Department of Food Science and Human Nutrition, Jeonbuk National University) ;
  • Cha, Youn-Soo (Department of Food Science and Human Nutrition, Jeonbuk National University) ;
  • Kim, Kyung-Ah (Department of Food and Nutrition, Chungnam National University)
  • 투고 : 2020.10.05
  • 심사 : 2020.11.20
  • 발행 : 2020.12.31

초록

본 연구에서는 괭생이 모자반 추출물의 소포체 스트레스 억제 효능을 연구하기 위하여 HepG2 간세포에 PA를 처리하여 소포체 스트레스를 유발한 후 추출물을 처리하여 UPR 관련 인자 발현 정도를 측정하였다. PA 750 μM 처리 시 UPR 관련 인자 (p-IRE1α, p-eIF2α, CHOP)의 단백질 발현이 가장 높게 나타나 소포체 스트레스를 효과적으로 유도함을 확인하였고 PA 750 μM를 12시간 처리 시 UPR 관련 인자 (p-IRE1α, p-eIF2α, CHOP)의 단백질 발현이 가장 높음을 확인하였다. 괭생이 모자반 처리 시 PA에 의해 상향 조절된 UPR 관련 인자의 mRNA 및 단백질 발현이 감소하여 PA로 유도된 소포체 스트레스에 대한 억제 효능이 있음을 보여주었다. 또한, 괭생이 모자반은 SIRT2, SIRT6 및 SIRT7의 mRNA의 발현을 증가시킴으로써 괭생이 모자반의 소포체 스트레스 억제 효능이 SIRT에 의한 것으로 확인되었다. 이러한 결과는 괭생이 모자반이 다양한 소포체 스트레스 관련 질병의 예방과 치료에 활용가능성이 있음을 시사한다.

Purpose: This study examined the effects of Sargassum horneri extracts on palmitic acid (PA)-induced endoplasmic reticulum (ER) stress in HepG2 cells. Methods: HepG2 cells were treated with varying concentrations of S. horneri extract or PA, and the cell viability was measured by water soluble tetrazolium salts analysis. The effective induction of ER stress and the effects of S. horneri were investigated through an examination of the ER stress-related genes, such as activating transcription factor 4 (ATF4), X-box binding protein (XBP1s), C/EBP homologous protein (CHOP), and 78-kDa glucose-regulated protein (GRP78) by quantitative reverse transcription polymerase chain reaction. The expression and activation levels of unfolded protein response (UPR) associated proteins, such as inositol-requiring enzyme-1α (IRE1α), eukaryotic translation initiation factor 2 alpha submit (eIF2α), and CHOP were examined by western blot analysis. Results: The treatment with PA increased the expression of UPR associated genes significantly and induced ER stress in a 12-hour treatment. Subsequent treatment with S. horneri reduced mRNA expression of ATF4, GRP78, and XBP1s. In addition, the protein levels of phosphate (p)-IRE1α, p-elF2α, and CHOP were also reduced by a treatment with S. horneri. An analysis of sirtuin (SIRT) mRNA expression in the S. horneri and PA-treated HepG2 cells showed that S. horneri increased the levels of SIRT2, SIRT6, and SIRT7, which indicates a possible role in reducing the expression of ER stress-related genes. Conclusion: These data indicate that S. horneri can exert an inhibitory effect on ER stress caused by PA and highlight its potential as an agent for managing various ER stress-related diseases.

키워드

과제정보

This work was supported by research fund of Chungnam National University.

참고문헌

  1. Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 1999; 13(10): 1211-1233. https://doi.org/10.1101/gad.13.10.1211
  2. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem 2005; 74(1): 739-789. https://doi.org/10.1146/annurev.biochem.73.011303.074134
  3. Gaut JR, Hendershot LM. The modification and assembly of proteins in the endoplasmic reticulum. Curr Opin Cell Biol 1993; 5(4): 589-595. https://doi.org/10.1016/0955-0674(93)90127-C
  4. Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee K, Liu CY, et al. The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol 2002; 3(6): 411-421. https://doi.org/10.1038/nrm829
  5. Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 2000; 101(5): 451-454. https://doi.org/10.1016/S0092-8674(00)80855-7
  6. Oyadomari S, Araki E, Mori M. Endoplasmic reticulum stress-mediated apoptosis in pancreatic β-cells. Apoptosis 2002; 7(4): 335-345. https://doi.org/10.1023/A:1016175429877
  7. Senft D, Ronai ZA. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci 2015; 40(3): 141-148. https://doi.org/10.1016/j.tibs.2015.01.002
  8. Harding HP, Calfon M, Urano F, Novoa I, Ron D. Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol 2002; 18: 575-599. https://doi.org/10.1146/annurev.cellbio.18.011402.160624
  9. Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 1988; 332(6163): 462-464. https://doi.org/10.1038/332462a0
  10. Yoshida H, Haze K, Yanagi H, Yura T, Mori K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 1998; 273(50): 33741-33749. https://doi.org/10.1074/jbc.273.50.33741
  11. Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 2000; 101(3): 249-258. https://doi.org/10.1016/S0092-8674(00)80835-1
  12. Cao SS, Kaufman RJ. Unfolded protein response. Curr Biol 2012; 22(16): R622-R626. https://doi.org/10.1016/j.cub.2012.02.021
  13. Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 2008; 29(1): 42-61. https://doi.org/10.1210/er.2007-0015
  14. Kaufman RJ. Orchestrating the unfolded protein response in health and disease. J Clin Invest 2002; 110(10): 1389-1398. https://doi.org/10.1172/JCI16886
  15. Guo W, Wong S, Xie W, Lei T, Luo Z. Palmitate modulates intracellular signaling, induces endoplasmic reticulum stress, and causes apoptosis in mouse 3T3-L1 and rat primary preadipocytes. Am J Physiol Endocrinol Metab 2007; 293(2): E576-E586. https://doi.org/10.1152/ajpendo.00523.2006
  16. Karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M, Volchuk A. Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic β-cell apoptosis. Endocrinology 2006; 147(7): 3398-3407. https://doi.org/10.1210/en.2005-1494
  17. Zhang X, Yuan Y, Jiang L, Zhang J, Gao J, Shen Z, et al. Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury: involvement of PARK2-dependent mitophagy. Autophagy 2014; 10(10): 1801-1813. https://doi.org/10.4161/auto.32136
  18. Li L, Hu GK. Pink1 protects cortical neurons from thapsigargin-induced oxidative stress and neuronal apoptosis. Biosci Rep 2015; 35(1): e00174. https://doi.org/10.1042/BSR20140104
  19. Brown ES, Allsopp PJ, Magee PJ, Gill CI, Nitecki S, Strain CR, et al. Seaweed and human health. Nutr Rev 2014; 72(3): 205-216. https://doi.org/10.1111/nure.12091
  20. Cho BO, Ryu HW, So YK, Jin CH, Byun MW, Kim WG, et al. Ishige sinicola extracts induce apoptosis via activation of a caspase cascade in human hela cells. J Korean Soc Food Sci Nutr 2012; 41(7): 901-906. https://doi.org/10.3746/JKFN.2012.41.7.901
  21. Matsumura Y. Nutrition trends in Japan. Asia Pac J Clin Nutr 2001; 10 Suppl: S40-S47. https://doi.org/10.1046/j.1440-6047.2001.00215.x
  22. Shao P, Chen X, Sun P. Chemical characterization, antioxidant and antitumor activity of sulfated polysaccharide from Sargassum horneri. Carbohydr Polym 2014; 105: 260-269. https://doi.org/10.1016/j.carbpol.2014.01.073
  23. Sanjeewa KK, Fernando IP, Kim EA, Ahn G, Jee Y, Jeon YJ. Anti-inflammatory activity of a sulfated polysaccharide isolated from an enzymatic digest of brown seaweed Sargassum horneri in RAW 264.7 cells. Nutr Res Pract 2017; 11(1): 3-10. https://doi.org/10.4162/nrp.2017.11.1.3
  24. Kim DS, Sung NY, Park SY, Kim G, Eom J, Yoo JG, et al. Immunomodulating activity of Sargassum horneri extracts in RAW264.7 macrophages. J Nutr Health 2018; 51(6): 507-514. https://doi.org/10.4163/jnh.2018.51.6.507
  25. Malhi H, Kaufman RJ. Endoplasmic reticulum stress in liver disease. J Hepatol 2011; 54(4): 795-809. https://doi.org/10.1016/j.jhep.2010.11.005
  26. Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet 2014; 30(7): 271-286. https://doi.org/10.1016/j.tig.2014.04.007
  27. Yao Y, Yang Y, Zhu WG. Sirtuins: nodes connecting aging, metabolism and tumorigenesis. Curr Pharm Des 2014; 20(11): 1614-1624. https://doi.org/10.2174/13816128113199990513
  28. Thomas SS, Park S, Cha YS, Kim KA. Emodin exerts protective effect against palmitic acid-induced endoplasmic reticulum stress in HepG2 cells. J Nutr Health 2019; 52(2): 176-184. https://doi.org/10.4163/jnh.2019.52.2.176
  29. Kwak HJ, Choi HE, Jang J, Park SK, Bae YA, Cheon HG. Bortezomib attenuates palmitic acid-induced ER stress, inflammation and insulin resistance in myotubes via AMPK dependent mechanism. Cell Signal 2016; 28(8): 788-797. https://doi.org/10.1016/j.cellsig.2016.03.015
  30. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell 2001; 7(6): 1153-1163. https://doi.org/10.1016/S1097-2765(01)00264-7
  31. Ma K, Vattem KM, Wek RC. Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress. J Biol Chem 2002; 277(21): 18728-18735. https://doi.org/10.1074/jbc.M200903200
  32. Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta 2013; 1833(12): 3460-3470. https://doi.org/10.1016/j.bbamcr.2013.06.028
  33. Back SH, Schroder M, Lee K, Zhang K, Kaufman RJ. ER stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods 2005; 35(4): 395-416. https://doi.org/10.1016/j.ymeth.2005.03.001
  34. Ma A. Unresolved ER stress inflames the intestine. Cell 2008; 134(5): 724-725. https://doi.org/10.1016/j.cell.2008.08.023
  35. Chen X, Shen J, Prywes R. The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem 2002; 277(15): 13045-13052. https://doi.org/10.1074/jbc.M110636200
  36. Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 1999; 10(11): 3787-3799. https://doi.org/10.1091/mbc.10.11.3787
  37. Wang Y, Shen J, Arenzana N, Tirasophon W, Kaufman RJ, Prywes R. Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. J Biol Chem 2000; 275(35): 27013-27020. https://doi.org/10.1016/S0021-9258(19)61473-0
  38. Kiran S, Anwar T, Kiran M, Ramakrishna G. Sirtuin 7 in cell proliferation, stress and disease: Rise of the Seventh Sirtuin! Cell Signal 2015; 27(3): 673-682. https://doi.org/10.1016/j.cellsig.2014.11.026
  39. Jung TW, Lee KT, Lee MW, Ka KH. SIRT1 attenuates palmitate-induced endoplasmic reticulum stress and insulin resistance in HepG2 cells via induction of oxygen-regulated protein 150. Biochem Biophys Res Commun 2012; 422(2): 229-232. https://doi.org/10.1016/j.bbrc.2012.04.129
  40. Liu G, Su L, Hao X, Zhong N, Zhong D, Singhal S, et al. Salermide up-regulates death receptor 5 expression through the ATF4-ATF3-CHOP axis and leads to apoptosis in human cancer cells. J Cell Mol Med 2012; 16(7): 1618-1628. https://doi.org/10.1111/j.1582-4934.2011.01401.x
  41. Bang IH, Kwon OK, Hao L, Park D, Chung MJ, Oh BC, et al. Deacetylation of XBP1s by sirtuin 6 confers resistance to ER stress-induced hepatic steatosis. Exp Mol Med 2019; 51(9): 1-11.

피인용 문헌

  1. The Marine-Derived Natural Product Epiloliolide Isolated from Sargassum horneri Regulates NLRP3 via PKA/CREB, Promoting Proliferation and Anti-Inflammatory Effects of Human Periodontal Ligament Cells vol.19, pp.7, 2020, https://doi.org/10.3390/md19070388