DOI QR코드

DOI QR Code

Micrometeorological Characteristics in the Atmospheric Boundary Layer in the Seoul Metropolitan Area during High-Event and Non-event Days

  • Park, Il-Soo (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies) ;
  • Park, Moon-Soo (Department of Climate and Environment, Sejong University) ;
  • Lee, Joonsuk (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies) ;
  • Jang, Yu Woon (Department of Environmental Sciences, Hankuk University of Foreign Studies)
  • 투고 : 2020.10.19
  • 심사 : 2020.11.27
  • 발행 : 2020.12.31

초록

This study focused on comparing the meteorological conditions in the Atmospheric Boundary Layer (ABL) on high-event days and non-event days in the Seoul Metropolitan Area (SMA). We utilized observed PM10 and meteorological variables at the surface as well as at the upper heights. The results showed that high-event days were consistently associated with lower wind speed, whereas wind direction showed no particular difference between high-event and non-event days with frequent westerlies and northwesterlies for both cases. During high-event days, the temperature was much warmer than the monthly normal values with a sharp increasing trend, and Relative Humidity (RH) was higher than the monthly normal, especially on high-event days in February. During high-event days in spring, a double inversion layer was present at surface and upper heights. This indicates that stability in the multi-layer is an important indicator of higher PM10 concentrations. Net radiation in spring and winter is also closely associated with higher PM10 concentrations. Strong net radiation resulted in large sensible heat, which in turn facilitated a deeper mixing height with diluted PM10 concentrations; in contrast, PM10 concentrations were higher when sensible heat in spring and winter was very low. We also confirmed that convective and friction velocity was higher on non-event days than on high-event days, and this was especially obvious in spring and winter. This indicated that thermal turbulence was dominant in spring, whereas in winter, mechanical turbulence was dominant over the SMA.

키워드

참고문헌

  1. Airkorea, 2019, https://www.airkorea.or.kr/index.
  2. An, Z., Huang, R. J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi, Z., Han, Y., Gu, Z., Ji, Y., 2019, Severe haze in northern China: a synergy of anthropogenic emissions and atmospheric processes, Proc. Nat. Acad. Sci., 116, 8657-8666. https://doi.org/10.1073/pnas.1900125116
  3. Barmpadimos, I., Hueglin, C., Keller, J., Henne, S., Prevot, A. S. H., 2011, Influence of meteorology on PM10 trends and variability in Switzerland from 1991 to 2008, Atmos. Chem. Phys., 11, 1813-1835. https://doi.org/10.5194/acp-11-1813-2011
  4. CSIRO, 2019, https://www.csiro.au/.
  5. Du, C., Liu, S., Yu, X., Li, X., Chen, C., Peng, Y., Dong, Y., Dong, Z., Wang, F., 2013, Urban boundary layer height characteristics and relationship with particulate matter mass concentrations in Xi'an, Central China, Aerosol Air Qual. Res., 13, 1598-1607. https://doi.org/10.4209/aaqr.2012.10.0274
  6. Hooyberghs, J., Mensink, C., Dumont, G., Fierens, F., Brasseur, O., 2005, A Neural network forecast for daily average PM10 concentrations in Belgium, Atmos. Environ., 39, 3279-3289. https://doi.org/10.1016/j.atmosenv.2005.01.050
  7. Hurley, P. J., 2008, TAPM V4. Part 1: Technical Description, CSIRO Marine and Atmospheric Research Paper No. 25, CSIRO, Victoria, Australia.
  8. Hurley, P. J., Edwards, M., Luhar, A., 2008, TAPM V4. Part 2: Summary of some verification studies, CSIRO Marine and Atmospheric Research Paper No. 26, CSIRO, Victoria, Australia.
  9. Jo, H. Y., Kim, C. H., 2013, Identification of long-range transported haze phenomena and their meteorological features over Northeast Asia, J. Appl. Meteorol. Climatol., 52, 1318-1328. https://doi.org/10.1175/JAMC-D-11-0235.1
  10. Kim, C. H., Park, S. Y., Kim, Y. J., Chang, L. S., Song, S. K., Moon, Y. S., Song, C. K., 2012, A Numerical study on indicators of long-range transport potential for anthropogenic particulate matters over northeast Asia, Atmospheric Environ., 58, 35-44. https://doi.org/10.1016/j.atmosenv.2011.11.002
  11. KMA, 2019, http://www.kma.go.kr/home/index.jsp.
  12. Kwon, T. H., Park, M. S., Yi, C., Choi, Y. J., 2014, Effects of different averaging operators on the urban turbulent fluxes, Atmos. Korean Meteorol. Soc., 24, 197-206.
  13. Large, W. G., Mcwilliams, J. C., Doney, S. C., 1994, Oceanic vertical mixing - a review and a model with a nonlocal boundary-layer parameterization, Rev. Geophys., 32, 363-403. https://doi.org/10.1029/94rg01872
  14. Li, S., Ma, Z., Xiong, X., Christiani, D. C., Wang, Z., Liu, Y., 2016, Satellite and ground observations of severe air pollution episodes in the winter of 2013 in Beijing, China, Aerosol Air Qual. Res., 16, 977-989. https://doi.org/10.4209/aaqr.2015.01.0057
  15. Li, X., Wang, Y., Zhao, H., Hong, Y., Liu, N., Ma, J., 2018, Characteristics of pollutants and boundary layer structure during two haze events in summer and autumn 2014 in Shenyang, Northeast China, Aerosol Air Qual. Res., 18, 386-396. https://doi.org/10.4209/aaqr.2017.03.0100
  16. Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Zhu, B., 2017, Aerosol and boundary-layer interactions and impact on air quality, Natl. Sci. Rev., 4, 810-833. https://doi.org/10.1093/nsr/nwx117
  17. Miao, Y., Li, J., Miao, S., Che, H., Wang, Y., Zhang, X., Zhu, R., Liu, S., 2019, Interaction between planetary boundary layer and PM2.5 pollution in megacities in China: a review, Curr. Pollut. Rep., 5, 261-271. https://doi.org/10.1007/s40726-019-00124-5
  18. Oke, T. R., 1982, The energetic basis of the urban heat island, Quart. J. R. Met. Soc., 108, 1-24. https://doi.org/10.1002/qj.49710845502
  19. Pahlow, M., Kleissl, J., Parlange, M. B., 2005, Atmospheric boundary-layer structure observed during a haze event due to forest-fire smoke, Boundary Layer Meteorol., 114, 53-70. https://doi.org/10.1007/s10546-004-6350-z
  20. Park, I. S., Choi, W. J., Lee, T. Y., Lee, S. J., Han, J. S., Kim, C. H., 2005, Simulation of long-range transport of air pollutants over northeast Asia using a comprehensive acid deposition model, Atmos. Environ., 39, 4075-4085. https://doi.org/10.1016/j.atmosenv.2005.03.038
  21. Park, I. S., Kim, H. K., Song, C. K., Jang, Y. W., Kim, S H., Cho, C. R., Owen, J. S., Kim, C. H., Chung, K. W., Park, M. S., 2019, Meteorological characteristics and assessment of the effect of local emissions during high PM10 concentration in the Seoul metropolitan area, Asian J. Atmos. Environ., 13(2), 117-135. https://doi.org/10.5572/ajae.2019.13.2.117
  22. Park, I. S., Lee, S. J., Kim, C. H., Yoo, C., Lee, Y. H., 2004, Simulating urban-scale air pollutants and their predicting capabilities over the Seoul Metropolitan Area, J. Air Waste Manag. Assoc., 54, 695-710. https://doi.org/10.1080/10473289.2004.10470942
  23. Park, I. S., Park, M. S., Jang, Y. W., Kim, H. K., Song, C. K., Owen, J. S., Kim, S. H., Cho, C. R., Kim, C. H., 2020, Impact comparison of synoptic meteorology and nationwide/local emissions on the Seoul Metropolitan Area during high PM multi-event and non-event days, Asian J. Atmos. Environ., 14(3), 263-279. https://doi.org/10.5572/ajae.2020.14.3.263
  24. Park, I. S., Song, C. K., Park, M. S., Kim, B. G., Jang, Y. W., Ha, S. S., Jang, S. H., Chung, K. W., Lee, H. J., Lee, U. J., Kim, S. K., Kim, C. H., 2018, Numerical study on the impact of power plants on primary PM10 concentrations in South Korea, Asian J. Atmos. Environ., 12(3), 255-273. https://doi.org/10.5572/ajae.2018.12.3.255
  25. Park, M. S., 2018, Overview of meteorological surface variables and boundary-layer structures in the Seoul Metropolitan Area during the MAPS-Seoul campaign, Aerosol Air Qual. Res., 18, 2157-2172. https://doi.org/10.4209/aaqr.2017.10.0428
  26. Park, M. S., Joo, S. J., Park, S. U., 2014, Carbon dioxide concentration and flux in an urban residential area in Seoul, Korea, Adv. Atmos. Sci., 31, 1101-1112. https://doi.org/10.1007/s00376-013-3168-y
  27. Park, M. S., Park, S. H., Chae, J. H., Choi, M. H., Song, Y., Kang, M., Rho, J. W., 2017, High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea, Atmos. Meas. Tech., 10, 1575-1594. https://doi.org/10.5194/amt-10-1575-2017
  28. Park, S. U., Lee, I. H., Choe, A., Joo, S. J., 2015, Contributions of the pollutant emission in South Korea to the aerosol concentrations and depositions in Asia, Asia Pac. J. Atmos. Sci., 51, 183-195. https://doi.org/10.1007/s13143-015-0069-2
  29. Seo, J., Kim, J. Y., Yoon, D., Lee, J. Y., Kim, H., Lim, Y. B., Kim, Y., Jin, H. C., 2017, On the multiday haze in the Asian continental outflow: the important role of synoptic conditions combined with regional and local sources, Atmos. Chem. Phys., 17, 9311-9332. https://doi.org/10.5194/acp-17-9311-2017
  30. Song, C., Wu, L., Xie, Y., He, J., Chen, X., Wang, T., Lin,Y., Jin, T., Wang, A., Liu, Y., Dai, Q., Liu, B., Wang,Y. N., Mao, H., 2017, Air pollution in China: status and spatiotemporal variations, Environ. Pollut., 227, 334-347. https://doi.org/10.1016/j.envpol.2017.04.075
  31. Su, T., Li, Z., Kahn, R., 2018, Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors, Atmos. Chem. Phys., 18, 15921-15935. https://doi.org/10.5194/acp-18-15921-2018
  32. Tang, G., Zhang, J., Zhu, X., Song, T., Munkel, C., Hu, B., Schafer, K., Liu, Z., Zhang, J., Wang, L., Xin, J., Suppan, P., Wang, Y., 2016, Mixing layer height and its implications for air pollution over Beijing, China, Atmos. Chem. Phys., 16, 2459-2475. https://doi.org/10.5194/acp-16-2459-2016
  33. Tang, G., Zhao, P., Wang, Y., Gao, W., Cheng, M., Xin, J., Li, X., Wang, Y., 2017, Mortality and air pollution in Beijing: the long-term relationship, Atmos. Environ., 150, 238-243. https://doi.org/10.1016/j.atmosenv.2016.11.045
  34. Wang, C., Jia, M., Xia, H., Wu, Y., Wei, T., Shang, X., Yang, C., Xue, X., Dou, X., 2019, Relationship analysis of PM2.5 and boundary layer height using an aerosol and turbulence detection lidar, Atmos. Meas. Tech., 12, 3303-3315. https://doi.org/10.5194/amt-12-3303-2019
  35. Wang, Y., Yao, L., Wang, L., Liu, Z., Ji, D., Tang, G., Zhang, J., Sun, Y., Hu, B. and Xin, J., 2014, Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China, Sci. China Earth Sci., 57, 14-25. https://doi.org/10.1007/s11430-013-4773-4
  36. Wei, W., Zhang, H., Wu, B., Huang, Y., Cai, X., Song, Y.,Li, J., 2018, Intermittent turbulence contributes to vertical dispersion of PM2.5 in the north China plain: cases from Tianjin, Atmos. Chem. Phys., 18, 12953-12967. https://doi.org/10.5194/acp-18-12953-2018
  37. Zhou, L., Xu, X., Ding, G., Zhou, M., Cheng, X., 2005, Diurnal variations of air pollution and atmospheric boundary layer structure in Beijing during winter 2000/2001, Adv. Atmos. Sci., 22, 126-132. https://doi.org/10.1007/BF02930876