Acknowledgement
This research was a part of the project titled 'Gyeongbuk Sea Grant', funded by the Ministry of Oceans and Fisheries, Korea.
References
- Belcher, E., Hanot, W. and Burch, J. (2002), "Dual-frequency identification sonar (DIDSON)", Proceedings of the 2002 Interntional Symposium on Underwater Technology (Cat. No. 02EX556).
- Cho, H., Gu, J. and Yu, S.C. (2015), "Robust sonar-based underwater object recognition against angle-of-view variation", IEEE Sensor. J., 16(4), 1013-1025. https://doi.org/10.1109/JSEN.2015.2496945
- Etter, P.C. (1995), "Underwater acoustic modeling: principles, techniques and applications", CRC Press.
- Hong, S. and Kim, J. (2020), "Three-dimensional Visual Mapping of Underwater Ship Hull Surface Using Piecewise-planar SLAM", Int. J. Control Autom. Syst., 18(3), 564-574. https://doi.org/10.1007/s12555-019-0646-8
- Isola, P., Zhu, J.Y., Zhou, T. and Efros, A.A. (2017), "Image-to-image translation with conditional adversarial networks", Proceedings of the IEEE conference on computer vision and pattern recognition.
- Johannsson, H., Kaess, M., Englot, B., Hover, F. and Leonard, J. (2010), "Imaging sonar-aided navigation for autonomous underwater harbor surveillance", Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.
- Karimanzira, D., Renkewitz, H., Shea, D. and Albiez, J. (2020), "Object Detection in Sonar Images", Electronics, 9(7), 1180. https://doi.org/10.3390/electronics9071180
- Kim, B. and Yu, S.C. (2017), "Imaging sonar based real-time underwater object detection utilizing adaboost method", In 2017 IEEE Underwater Technology (UT), 1-5
- Kim, J., Kim, T., Kim, J., Rho, S., Song, Y.W. and Yu, S.C. (2019), "Simulation and Feasibility Test of MiniROVs with AUV for the Manipulation Purpose", In OCEANS 2019 MTS/IEEE SEATTLE, 1-6.
- Kim, J., Sung, M. and Yu, S.C. (2018a), "Development of simulator for autonomous underwater vehicles utilizing underwater acoustic and optical sensing emulators", Proceedings of the 2018 18th International Conference on Control, Automation and Systems (ICCAS).
- Kim, T., Kim, J. and Byun, S.W. (2018b), "A comparison of nonlinear filter algorithms for terrain-referenced underwater navigation", Int. J. Control Autom. Syst., 16(6), 2977-2989. https://doi.org/10.1007/s12555-017-0504-5
- Lee, M., Kim, J. and Yu, S.C. (2019), "Robust 3D Shape Classification Method using Simulated Multi View Sonar Images and Convolutional Nueral Network", In OCEANS 2019-Marseille, 1-5.
- Loc, M.B., Choi, H.S., Seo, J.M., Baek, S.H. and Kim, J.Y. (2014), "Development and control of a new AUV platform", Int. J. Control, Autom. Syst., 12(4), 886-894. https://doi.org/10.1007/s12555-012-0385-6
- Maki, T., Horimoto, H., Ishihara, T. and Kofuji, K. (2020), "Tracking a Sea Turtle by an AUV with a Multibeam Imaging Sonar: Toward Robotic Observation of Marine Life", Int. J. Control Autom. Syst., 18(3), 597-604. https://doi.org/10.1007/s12555-019-0690-4
- Myers, V. and Williams, D.P. (2011), "Adaptive multiview target classification in synthetic aperture sonar images using a partially observable Markov decision process", IEEE J. Oceanic Eng., 37(1), 45-55. https://doi.org/10.1109/JOE.2011.2175510
- Palmese, M. and Trucco, A. (2006), "Acoustic imaging of underwater embedded objects: Signal simulation for three-dimensional sonar instrumentation", IEEE T. Instrum. Measurement, 55(4), 1339-1347. https://doi.org/10.1109/TIM.2006.876402
- Ronneberger, O., Fischer, P. and Brox, T. (2015), "U-net: Convolutional networks for biomedical image segmentation", Proceedings of the International Conference on Medical image computing and computerassisted intervention.
- Tang, Z., Wang, Z., Lu, J., Ma, G. and Zhang, P. (2019), "Underwater robot detection system based on fish's lateral line", Electronics, 8(5), 566. https://doi.org/10.3390/electronics8050566
- Yu, S.C. (2008), "Development of real-time acoustic image recognition system using by autonomous marine vehicle", Ocean Eng., 35(1), 90-105. https://doi.org/10.1016/j.oceaneng.2007.07.010