DOI QR코드

DOI QR Code

물의 흐름을 고려한 인공동결 시스템의 열-수리 거동 연구

Experimental and Numerical Study on Hydro-thermal Behaviour of Artificial Freezing System with Water Flow

  • 진현우 (한국건설기술연구원 극한환경연구센터) ;
  • 이장근 (한국건설기술연구원 극한환경연구센터) ;
  • 유병현 (한국건설기술연구원 극한환경연구센터) ;
  • 고규현 (금오공과대학교 토목공학과)
  • Jin, Hyunwoo (Extreme Engrg. Research Center, Korea Institute of Civil Engrg. and Building Technology) ;
  • Lee, Jangguen (Extreme Engrg. Research Center, Korea Institute of Civil Engrg. and Building Technology) ;
  • Ryu, Byung Hyun (Extreme Engrg. Research Center, Korea Institute of Civil Engrg. and Building Technology) ;
  • Go, Gyu-Hyun (Dept. of Civil Engrg., Kumoh National Institute of Tech.)
  • 투고 : 2020.08.24
  • 심사 : 2020.09.15
  • 발행 : 2020.12.31

초록

인공동결 공법은 지반에 영구적인 영향을 초래하지 않는 지반개량 공법으로 인공동결 공법의 효율성 및 설계기준을 결정하는 핵심인자는 물의 흐름이다. 따라서 인공동결 공법을 적용하기 위해서는 동결구근 및 벽체 형성에 물의 흐름이 미치는 영향에 대한 연구가 선행되어야 한다. 본 논문에서는 물의 흐름이 동결구근 및 벽체 형성에 미치는 영향을 극대화하기 위해 순수한 물을 활용한 실내실험과 수치해석 연구를 수행하였다. 열-수리 연계 해석모델을 새롭게 제안하고 이를 실험적으로 검증하였으며, 유량이 동결벽체 형성 시간 및 형상을 결정짓는 핵심인자임을 확인하였다. 나아가, 동결구근 및 벽체를 가시적으로 확인하기 어려운 지반에서 활용성이 높을 것으로 예상되는 동결벽체 형성 시간을 간접적으로 예측할 수 있는 방안을 새롭게 제시하였다.

The artificial ground freezing method is a ground amelioration technology that does not have a permanent effect on the ground. One of the key factors that determine the efficiency and design criteria of the artificial ground freezing is the groundwater flow. Therefore, in order to accurately evaluate the behavior of the artificial ground freezing, studies on the effect of water flow on the formation of ice walls must be preceded. In this paper, experimental and numerical analyses were conducted using only pure water to maximize the effect of water flow on the formation of ice walls. A hydro-thermal coupled model for freezing behavior was proposed and the accuracy of the model was verified. Through the numerical and experimental studies, the flow rate dominates not only the formation time but also the shape of the ice wall. In addition, this study proposes a method to indirectly predict the ice wall formation time, which is expected to be highly useful for a practical application where it is difficult to visually identify ice walls.

키워드

참고문헌

  1. Alzoubi, M.A., Madiseh, A., Hassani, F.P., and Sasmito, A.P. (2019), "Heat Transfer Analysis in Artificial Ground Freezing under High Seepage: Validation and Heatlines Visualization", Int. J. of Thermal Sciences, Vol.139, pp.232-245. https://doi.org/10.1016/j.ijthermalsci.2019.02.005
  2. Andersland, O.B. and Ladanyi, B. (2004), "Frozen ground engineering (Second edition).", John & Wiley Sons.
  3. Comsol Inc, Comsol Multiphysics User's Manual Ver. 5.5, 2020. USA.
  4. Crippa, C. and Manassero, V. (2006), "Artificial Ground Freezing at Sophiaspoortunnel (The Netherlands). Freezing Parameters: Data Acquisition and Processing", Proceeding of GeoCongress 2006: Geotechnical Engineering in the Information Technology Age, Civil Engineering in the Arctic Offshore, Atlanata, pp.1-6.
  5. Han, L., Ye, G., Li, Y., Xia, X., and Wang, J. (2016), "In Situ Monitoring of Frost Heave Pressure during Cross Passage Construction Using Ground-freezing Method", Canadian Geotechnical Journal, Vol.53, pp.530-539. https://doi.org/10.1139/cgj-2014-0486
  6. Huang, S., Guo, Y., Liu, Y. Ke, L., Liu, G., and Chen, C. (2018), "Study on the Influence of Water Flow on Temperature Around Freeze Pipes and its Distribution Optimization during Artificial Ground Freezing", Applied Thermal Engineering, Vol.35, pp.435-5.
  7. Tuksu (2007), "Research on the Development of Design and Construction Techniques of Artificial Ground Freezing to Construction Application", Tuksu Engineering & Construction, Report RPO3398, Korea.
  8. Lao, L., Ji, Z., Huang, L., and Li, S. (2017), "Research on the Temperature Field of a Partially Freezing Sand Barrier with Groundwater Seepage", Sciences in Cold and Arid Regions, Vol.9, pp. 280-288.
  9. Li, Z., Chen, J., Sugimoto, M., and Ge, H. (2019), "Numerical Simulation Model of Artificial Ground Freezing for Tunneling under Seepage Flow Conditions", Tunnelling and Underground Space Technology, Vol.92, 103035. https://doi.org/10.1016/j.tust.2019.103035
  10. Marwan, A., Zhou, M., Abdelrehim, M.Z., and Meschke, G. (2016), "Optimization of Artificial Ground Freezing in Tunneling in the Presence of Seepage Flow", Computers and Geotechnics, Vol.75, pp.112-125. https://doi.org/10.1016/j.compgeo.2016.01.004
  11. Papakonstantinou, S., Anagnostou, G., and Pimentel, E. (2013), "Evaluation of Ground Freezing Data from the Naples Subway", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, Vol.166, Issue. GE3, pp.280-298. https://doi.org/10.1680/geng.10.00099
  12. Pimentel, E., Papakonstantinou, S., and Anagnostou, G. (2012a), "Numerical Interpretation of Temperature Distributions from Three Ground Applications in Urban Tunnelling", Tunnelling and Underground Space Technology, Vol.28, pp.57-69. https://doi.org/10.1016/j.tust.2011.09.005
  13. Pimentel, E., Sres, A., and Anagnostou, G. (2012b), "Large-scale Laboratory Tests on Artificial Ground Freezing under Seepage-flow Conditions", Geotechnique, Vol.62, No.3, pp.227-241. https://doi.org/10.1680/geot.9.P.120
  14. Shin, H., Kim, J., and Lee, J. (2018), "Effect of Groundwater Flow on Ice-wall Integrity", J. of the Korean Geotechnical Society, Vol. 34, No.11, pp.43-55. https://doi.org/10.7843/KGS.2018.34.11.43
  15. Vitel, M., Rouabhi, A., Tijani, M., and Guerin, F. (2016), "Modeling Heat and Mass Transfer During Ground Freezing Subjected to High Seepage Velocities", Computers and Geotechnics, Vol.73, pp.1-15. https://doi.org/10.1016/j.compgeo.2015.11.014
  16. Yang, X., Ji, Z., Zhang, P., and Qi, J. (2019), "Model Test and Numerical Simulation on the Development of Artificially Freezing Wall in Sandy Layers Considering Water Seepage", Transportation Geotechnics, Vol.21, 100293. https://doi.org/10.1016/j.trgeo.2019.100293