DOI QR코드

DOI QR Code

Carpomitra costata Extract Suppresses Interleukin-1β-Induced Inflammatory Response in SW1353 Human Chondrocytes through Suppressing NF-κB Signaling Pathway

  • Received : 2020.11.06
  • Accepted : 2020.12.21
  • Published : 2020.12.31

Abstract

Osteoarthritis (OA) is an inflammatory degenerative joint disease that is accompanied by irreversible joint cartilage destruction. Recently, the antioxidant effects of Carpomitra costata, which is a type of brown algae, have been reported, but their effects on OA have not been investigated. In this study, the anti-osteoarthritic effect of the ethanol extract of C. costata (EECC) on SW1353 human chondrocytes was studied. Results showed that EECC significantly attenuated the interleukin-1β (IL-1β)-induced release of pro-inflammatory mediators, including prostaglandin E2 and nitric oxide (NO), as well as expressions of cyclo-oxygenase-2 and inducible NO synthase. EECC also inhibited the IL-1β-induced expressions of matrix metalloproteinase-1, -3, and -13 in SW1353 chondrocytes, which reduced their extracellular secretion. In addition, the oxidative stress induced by IL-1β was confirmed to be blocked by EECC due to the inhibition of reactive oxygen species generation. Moreover, EECC suppressed IL-1β-mediated translocation of nuclear factor-kappa B (NF-κB) from cytosol into the nucleus and the degradation of IκB-α, which indicates that EECC exhibits anti-inflammatory effects by inhibiting the NF-κB signaling pathway. These results are the first to demonstrate the anti-inflammatory activities of C. costata extracts in chondrocytes, thus suggesting that this algae extract may be used in the treatment of OA.

Keywords

References

  1. Brittberg, M., Gomoll, A. H., Canseco, J. A., Far, J., Lind, M. and Hui, J. 2016. Cartilage repair in the degenerative ageing knee. Acta. Orthop. 87, S26-38.
  2. Andriacchi, T. P., Favre, J., Erhart-Hledik, J. C. and Chu, C. R. 2015. A systems view of risk factors for knee osteoarthritis reveals insights into the pathogenesis of the disease. Ann. Biomed. Eng. 43, 376-387. https://doi.org/10.1007/s10439-014-1117-2
  3. Son, Y. O. and Chun, J. S. 2018. Estrogen-related receptor γ is a novel catabolic regulator of osteoarthritis pathogenesis. BMB Rep. 51, 165-166. https://doi.org/10.5483/BMBRep.2018.51.4.019
  4. Hochberg, M., Chevalier, X., Henrotin, Y., Hunter, D. J. and Uebelhart, D. 2013. Symptom and structure modification in osteoarthritis with pharmaceutical-grade chondroitin sulfate: what's the evidence? Curr. Med. Res. Opin. 29, 259-267. https://doi.org/10.1185/03007995.2012.753430
  5. Martel-Pelletier, J., Boileau, C., Pelletier, J. P. and Roughley, P. J. 2008. Cartilage in normal and osteoarthritis conditions. Best Pract. Res. Clin. Rheumatol. 22, 351-384. https://doi.org/10.1016/j.berh.2008.02.001
  6. Blasioli, D. J. and Kaplan, D. L. 2014. The roles of catabolic factors in the development of osteoarthritis. Tissue Eng. Part B. Rev. 20, 355-363. https://doi.org/10.1089/ten.teb.2013.0377
  7. Jotanovic, Z., Mihelic, R., Sestan, B. and Dembic, Z. 2012. Role of interleukin-1 inhibitors in osteoarthritis: an evidence-based review. Drugs Aging 29, 343-358. https://doi.org/10.2165/11599350-000000000-00000
  8. Rai, M. F. and Sandell, L. J. 2011. Inflammatory mediators: tracing links between obesity and osteoarthritis. Crit. Rev. Eukaryot. Gene Expr. 21, 131-142. https://doi.org/10.1615/CritRevEukarGeneExpr.v21.i2.30
  9. Panina, S. B., Krolevets, I. V., Milyutina, N. P., Sagakyants, A. B., Kornienko, I. V., Ananyan, A. A., Zabrodin, M. A., Plotnikov, A. A. and Vnukov, V. V. 2017. Circulating levels of proinflammatory mediators as potential biomarkers of post-traumatic knee osteoarthritis development. J. Orthop. Traumatol. 18, 349-357. https://doi.org/10.1007/s10195-017-0473-8
  10. Ramonda, R., Lorenzin, M., Modesti, V., Campana, C., Ortolan, A., Frallonardo, P. and Punzi, L. 2013. Serological markers of erosive hand osteoarthritis. Eur. J. Intern. Med. 24, 11-15. https://doi.org/10.1016/j.ejim.2012.10.002
  11. Ding, Q. H., Cheng, Y., Chen, W. P., Zhong, H. M. and Wang, X. H. 2013. Celastrol, an inhibitor of heat shock protein 90β potently suppresses the expression of matrix metalloproteinases, inducible nitric oxide synthase and cyclooxygenase-2 in primary human osteoarthritic chondrocytes. Eur. J. Pharmacol. 708, 1-7. https://doi.org/10.1016/j.ejphar.2013.01.057
  12. Goldring, M. B. and Otero, M. 2011. Inflammation in osteoarthritis. Curr. Opin. Rheumatol. 23, 471-478. https://doi.org/10.1097/BOR.0b013e328349c2b1
  13. Roman-Blas, J. A. and Jimenez, S. A. 2006. NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage 14, 839-848. https://doi.org/10.1016/j.joca.2006.04.008
  14. Lepetsos, P. and Papavassiliou, A. G. 2016. ROS/oxidative stress signaling in osteoarthritis. Biochim. Biophys. Acta. 1862, 576-591. https://doi.org/10.1016/j.bbadis.2016.01.003
  15. Li, D., Xie, G. and Wang, W. 2012. Reactive oxygen species: the 2-edged sword of osteoarthritis. Am. J. Med. Sci. 344, 486-490. https://doi.org/10.1097/MAJ.0b013e3182579dc6
  16. Klinge, S. A. and Sawyer, G. A. 2013. Effectiveness and safety of topical versus oral nonsteroidal anti-inflammatory drugs: a comprehensive review. Phys. Sportsmed. 41, 64-74. https://doi.org/10.3810/psm.2013.05.2016
  17. Herndon, C. M. 2012. Topical delivery of nonsteroidal anti-inflammatory drugs for osteoarthritis. J. Pain Palliat. Care Pharmacother. 26, 18-23. https://doi.org/10.3109/15360288.2011.653600
  18. Fitton, J. H. 2011. Therapies from fucoidan; multifunctional marine polymers. Mar. Drugs 9, 1731-1760. https://doi.org/10.3390/md9101731
  19. Myers, S. P., O'Connor, J., Fitton, J. H., Brooks, L., Rolfe, M., Connellan, P., Wohlmuth, H., Cheras, P. A. and Morris, C. 2010. A combined phase I and II open label study on the effects of a seaweed extract nutrient complex on osteoarthritis. Biologics 4, 33-44.
  20. Shin, H. C., Hwang, H. J., Kang, K. J. and Lee, B. H. 2006. An antioxidative and anti-inflammatory agent for potential treatment of osteoarthritis from Ecklonia cava. Arch. Pharm. Res. 29, 165-171. https://doi.org/10.1007/BF02974279
  21. Lee, G. H., Jin, S. W., Kim, S. J., Pham, T. H., Choi, J. H. and Jeong, H. G. 2019. Tetrabromobisphenol A induces MMP-9 expression via NADPH oxidase and the activation of ROS, MAPK, and Akt pathways in human breast cancer MCF-7 cells. Toxicol. Res. 35, 93-101. https://doi.org/10.5487/TR.2019.35.1.093
  22. Shin, S. K., Kim, J. H., Lee, J. H., Son, Y. H., Lee, M. W., Kim, H. J., Noh, S. A., Kim, K. P., Kim, I. G. and Lee, M. J. 2017. Docosahexaenoic acid-mediated protein aggregates may reduce proteasome activity and delay myotube degradation during muscle atrophy in vitro. Exp. Mol. Med. 49, e287. https://doi.org/10.1038/emm.2016.133
  23. Ziskoven, C., Jager, M., Zilkens, C., Bloch, W., Brixius, K. and Krauspe, R. 2010. Oxidative stress in secondary osteoarthritis: from cartilage destruction to clinical presentation? Orthop. Rev. (Pavia) 2, e23.
  24. Zheng, J., Hewage, S. R., Piao, M. J., Kang, K. A., Han, X., Kang, H. K., Yoo, E. S., Koh, Y. S., Lee, N. H., Ko, C. S., Lee, J. C., Ko, M. H. and Hyun, J. W. 2016. Photoprotective effect of Carpomitra costata extract against ultraviolet B-induced oxidative damage in human keratinocytes. J. Environ. Pathol. Toxicol. Oncol. 35, 11-28. https://doi.org/10.1615/jenvironpatholtoxicoloncol.2016014003
  25. Rigoglou, S. and Papavassiliou, A. G. 2013. The NF-κB signalling pathway in osteoarthritis. Int. J. Biochem. Cell Biol. 45, 2580-2584. https://doi.org/10.1016/j.biocel.2013.08.018
  26. Schuliga, M. 2015. NF-kappaB signaling in chronic inflammatory airway disease. Biomolecules 5, 1266-1283. https://doi.org/10.3390/biom5031266
  27. O'Dea, E. and Hoffmann, A. 2010. The regulatory logic of the NF-kappaB signaling system. Cold Spring Harb Perspect. Biol. 2, a000216. https://doi.org/10.1101/cshperspect.a000216