DOI QR코드

DOI QR Code

Overexpression of Mutant Galactose Permease (ScGal2_N376F) Effective for Utilization of Glucose/Xylose or Glucose/Galactose Mixture by Engineered Kluyveromyces marxianus

  • Kwon, Deok-Ho (Department of Bioengineering and Technology, Kangwon National University) ;
  • Kim, Saet-Byeol (Department of Bioengineering and Technology, Kangwon National University) ;
  • Park, Jae-Bum (Department of Bioengineering and Technology, Kangwon National University) ;
  • Ha, Suk-Jin (Department of Bioengineering and Technology, Kangwon National University)
  • 투고 : 2020.08.19
  • 심사 : 2020.10.05
  • 발행 : 2020.12.28

초록

Mutant sugar transporter ScGAL2-N376F was overexpressed in Kluyveromyces marxianus for efficient utilization of xylose, which is one of the main components of cellulosic biomass. K. marxianus ScGal2_N376F, the ScGAL2-N376F-overexpressing strain, exhibited 47.04 g/l of xylose consumption and 26.55 g/l of xylitol production, as compared to the parental strain (24.68 g/l and 7.03 g/l, respectively) when xylose was used as the sole carbon source. When a mixture of glucose and xylose was used as the carbon source, xylose consumption and xylitol production rates were improved by 195% and 360%, respectively, by K. marxianus ScGal2_N376F. Moreover, the glucose consumption rate was improved by 27% as compared to that in the parental strain. Overexpression of both wild-type ScGAL2 and mutant ScGAL2-N376F showed 48% and 52% enhanced sugar consumption and ethanol production rates, respectively, when a mixture of glucose and galactose was used as the carbon source, which is the main component of marine biomass. As shown in this study, ScGAL2-N376F overexpression can be applied for the efficient production of biofuels or biochemicals from cellulosic or marine biomass.

키워드

참고문헌

  1. Banerjee S, Mishra G, Roy A. 2019. Metabolic engineering of bacteria for renewable bioethanol production from cellulosic biomass. Biotechnol. Bioprocess Eng. 24:713-733. https://doi.org/10.1007/s12257-019-0134-2
  2. Lee J. 1997. Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol. 56: 1-24. https://doi.org/10.1016/S0168-1656(97)00073-4
  3. Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, et al. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673-686. https://doi.org/10.1016/j.biortech.2004.06.025
  4. Von Sivers M, Zacchi G. 1996. Ethanol from lignocellulosics: a review of the economy. Bioresour. Technol. 56: 131-140. https://doi.org/10.1016/0960-8524(96)00018-1
  5. Arora R, Behera S, Sharma NK, Kumar S. 2019. Evaluating the pathway for co-fermentation of glucose and xylose for enhanced bioethanol production using flux balance analysis. Biotechnol. Bioprocess Eng. 24: 924-933. https://doi.org/10.1007/s12257-019-0026-5
  6. Park J-B, Kim J-S, Jang S-W, Hong E, Ha S-J. 2015. The application of thermotolerant yeast Kluyveromyces marxianus as a potential industrial workhorse for biofuel production. KSBB J. 30: 125-131. https://doi.org/10.7841/ksbbj.2015.30.3.125
  7. Zhang B, Zhang J, Wang D, Han R, Ding R, Gao X, et al. 2016. Simultaneous fermentation of glucose and xylose at elevated temperatures co-produces ethanol and xylitol through overexpression of a xylose-specific transporter in engineered Kluyveromyces marxianus. Bioresour. Technol. 216: 227-237. https://doi.org/10.1016/j.biortech.2016.05.068
  8. Anderson P, McNeil K, Watson K. 1986. High-efficiency carbohydrate fermentation to ethanol at temperatures above 40 C by Kluyveromyces marxianus var. marxianus isolated from sugar mills. Appl. Environ. Microbiol. 51: 1314-1320. https://doi.org/10.1128/AEM.51.6.1314-1320.1986
  9. Fonseca GG, Heinzle E, Wittmann C, Gombert AK. 2008. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl. Microbiol. Biotechnol. 79: 339-354. https://doi.org/10.1007/s00253-008-1458-6
  10. Kim J-S, Park J-B, Jang S-W, Ha S-J. 2015. Enhanced xylitol production by mutant Kluyveromyces marxianus 36907-FMEL1 due to improved xylose reductase activity. Appl. Biochem. Biotechnol. 176: 1975-1984. https://doi.org/10.1007/s12010-015-1694-z
  11. Park J-B, Kim J-S, Jang S-W, Kweon D-H, Hong EK, Shin WC, et al. 2016. Sequence analysis of KmXYL1 genes and verification of thermotolerant enzymatic activities of xylose reductase from four Kluyveromyces marxianus strains. Biotechnol. Bioprocess Eng. 21: 581-586. https://doi.org/10.1007/s12257-016-0363-6
  12. Gancedo JM, Gancedo C. 1986. Catabolite repression mutants of yeast. FEMS Microbiol. Rev. 1: 179-187.
  13. Kim SR, Ha S-J, Wei N, Oh EJ, Jin Y-S. 2012. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol. 30: 274-282. https://doi.org/10.1016/j.tibtech.2012.01.005
  14. Wang M, Yu C, Zhao H. 2016. Directed evolution of xylose specific transporters to facilitate glucose-xylose co-utilization. Biotechnol. Bioeng. 113: 484-491. https://doi.org/10.1002/bit.25724
  15. Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E. 2014. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc. Natl. Acad. Sci. USA 111: 5159-5164. https://doi.org/10.1073/pnas.1323464111
  16. Hector RE, Qureshi N, Hughes SR, Cotta MA. 2008. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl. Microbiol. Biotechnol. 80: 675-684. https://doi.org/10.1007/s00253-008-1583-2
  17. Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, Van Dijken JP, Pronk JT. 2005. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 5: 925-934. https://doi.org/10.1016/j.femsyr.2005.04.004
  18. Saloheimo A, Rauta J, Stasyk V, Sibirny AA, Penttila M, Ruohonen L. 2007. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl. Microbiol. Biotechnol. 74: 1041-1052. https://doi.org/10.1007/s00253-006-0747-1
  19. Wahlbom CF, Otero RRC, van Zyl WH, Hahn-Hagerdal B, Jonsson LJ. 2003. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl. Environ. Microbiol. 69: 740-746. https://doi.org/10.1128/AEM.69.2.740-746.2003
  20. Apel AR, Ouellet M, Szmidt-Middleton H, Keasling JD, Mukhopadhyay A. 2016. Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomycescerevisiae. Sci. Rep. 6: 1-10. https://doi.org/10.1038/s41598-016-0001-8
  21. Runquist D, Hahn-Hagerdal B, Radstrom P. 2010. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol. Bbiofuels 3: 5. https://doi.org/10.1186/1754-6834-3-5
  22. Reznicek O, Facey SJ, de Waal PP, Teunissen AW, de Bont JA, Nijland JG, et al. 2015. Improved xylose uptake in Saccharomyces cerevisiae due to directed evolution of galactose permease Gal2 for sugar co-consumption. J. Appl. Microbiol. 119: 99-111. https://doi.org/10.1111/jam.12825
  23. Vasylyshyn R, Kurylenko O, Ruchala J, Shevchuk N, Kuliesiene N, Khroustalyova G, et al. 2020. Engineering of sugar transporters for improvement of xylose utilization during high-temperature alcoholic fermentation in Ogataea polymorpha yeast. Microb. Cell Fact. 19: 96. https://doi.org/10.1186/s12934-020-01354-9
  24. Lee K-S, Kim J-S, Heo P, Yang T-J, Sung Y-J, Cheon Y, et al. 2013. Characterization of Saccharomyces cerevisiae promoters for heterologous gene expression in Kluyveromyces marxianus. Appl. Microbiol. Biotechnol. 97: 2029-2041. https://doi.org/10.1007/s00253-012-4306-7
  25. Kwon D-H, Park J-B, Hong E, Ha S-J. 2019. Ethanol production from xylose is highly increased by the Kluyveromyces marxianus mutant 17694-DH1. Bioprocess Biosyst. Eng. 42: 63-70. https://doi.org/10.1007/s00449-018-2014-0
  26. Zhang B, Zhu Y, Zhang J, Wang D, Sun L, Hong J. 2017. Engineered Kluyveromyces marxianus for pyruvate production at elevated temperature with simultaneous consumption of xylose and glucose. Bioresour. Technol. 224: 553-562. https://doi.org/10.1016/j.biortech.2016.11.110