DOI QR코드

DOI QR Code

빅데이터, IoT, 인공지능 키워드 네트워크 분석

Analysis on Big data, IoT, Artificial intelligence using Keyword Network

  • 투고 : 2020.10.20
  • 심사 : 2020.12.15
  • 발행 : 2020.12.31

초록

본 논문에서는 빅데이터, IoT, 인공지능 관련 네트워크 분석을 통해 국내 연구동향을 파악하고 관련 시사점 도출을 목적으로 한다. 이를 위해, 2018년 국가연구개발정보를 활용하여 분석을 수행하였으며, 주요 기초 통계 분석과 언어 네트워크 분석을 수행하였다. 분석 결과, 빅데이터, IoT, 인공지능 관련 연구개발은 기초단계, 개발단계를 중심으로 연구가 진행 중이며, 대학과 중소기업의 비중이 높은 것으로 나타났다. 또한 언어 네트워크 분석 결과, 관련 분야는 스마트팜, 헬스케어 분야에 활용하기 위한 연구를 중심으로 이루어 지고 있는 것으로 판단된다. 이러한 연구결과를 바탕으로 본 연구에서는 인공지능을 활용하기 위해서는 빅데이터가 반드시 필요하며, 개인 식별화 연구가 더욱 활발히 진행되어야 한다는 점과 단순 R&D 활동이 아닌 기술사업화가 이루어 지기 위한 전 주기 지원이 필요하며, 적용 분야를 확대할 필요가 있다는 점을 주장하였다.

This paper aims to provide strategic suggestions by analyzing technology trends related to big data, IoT, and artificial intelligence. To this end, analysis was performed using the 2018 national R&D information, and major basic analysis and language network analysis were performed. As a result of the analysis, research and development related to big data, IoT, and artificial intelligence are being conducted by focusing on the basic and development stages, and it was found that universities and SMEs have a high proportion. In addition, as a result of the language network analysis, it is judged that the related fields are mainly research for use in the smart farm and healthcare fields. Based on these research results, first, big data is essential to use artificial intelligence, and personal identification research should be conducted more actively. Second, they argued that full-cycle support is needed for technology commercialization, not simple R&D activities, and the need to expand application fields.

키워드

참고문헌

  1. Y. Ji, J. Yu, and S. Lee, "IoT, Bigdata and AI," Communications of the Korean Institute of Information Scientists and Engineers, vol. 35, no. 7, 2017. pp. 43-50.
  2. S. Jang, "Design and Implementation of an Efficient Communication System for Collecting Sensor Data in Large Scale Sensors Networks " The Journal of the Korea Institute of Electronic Communication Sciences, vol. 24, no. 1, 2020, pp. 113-119.
  3. C. H. Yoon, "The study of Authorized / Unauthorized Vehicle Recognition System using Image Recognition with Neural Network " The Journal of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 2, 2020, pp. 299-306. https://doi.org/10.13067/JKIECS.2020.15.2.299
  4. S. Wasserman, and K. Faust, Social networks analysis: methods and applications. Oxford, UK: Cambridge University Press, 1994.
  5. R. Popping, Computer-assisted Text Analysis. London: Saga, 2000.
  6. Y. Choi and S. Park, "Research Trends in the Field of Local Government and Administration - An Analysis of Articles Published in Korean Society and Public Administration, 1991-2012 - ," Korean Journal of Public Administration, vol. 45, no. 1, 2011, pp. 123-139.
  7. E. Kim, "A Comparative Study on the Spectrum Policy Issues in Convergence Environment Semantic Network Analysis of News Coverage in the U.S. and S. Korea," International Telecommunications Policy Review, vol. 17, no. 4, 2010. pp. 107-139.
  8. E. Kim, "An Efficient Hierarchical Multi-Hop Clustering Scheme in Non-uniform Large Wireless Sensor Networks," Computer Science and its Applications, vol. 39, no. 3, 2012. pp. 248-257.
  9. A. Clauset, M.E.J.NEWMAN, Cristopher Moore, "Finding community structure in very large networks," Physical Review, 2004. pp. 69-70.
  10. N. J. Van Eck, L. Waltman, R. Dekker, J. van den Berg, "A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS," Journal of the American Society for Information Science and Technology, vol. 6, no. 1, 2010, pp. 2405-2416.