References
- Aspinall GO. Chemical characterization and structure determination of polysaccharides. Vol.1, pp 35-45. In: The Polysaccharides. Aspinall GO (ed). Academic Press, New York, USA (1982)
- Cho CW, Han CJ, Rhee YK, Lee YC, Shin KS, Shin JS, Lee KT, Hong HD. Cheonggukjang polysaccharides enhance immune activities and prevent cyclophosphamide-induced immunosuppression. Int. J. Biol. Macromol. 72: 519-525 (2015) https://doi.org/10.1016/j.ijbiomac.2014.09.010
- Choi JH, Shin KS. Structural analysis of anti-metastatic polysaccharides isolated from Opuntia humifusa. J Korean Soc Food Sci Nutr. 40: 214-222 (2011) https://doi.org/10.3746/JKFN.2011.40.2.214
- Di T, Chen G, Sun Y, Ou S, Zeng X, Ye H. Antioxidant and immunostimulating activities in vitro of sulfated polysaccharides isolated from Gracilaria rubra. J. Funct. Foods. 28: 64-75 (2017) https://doi.org/10.1016/j.jff.2016.11.005
- Ferreira, S. S., Passos, C. P., Madureira, P., Vilanova, M., Coimbra, M. A. Structure-function relationships of immunostimulatory polysaccharides: A review. Carbohydr. Polym. 132: 378-396 (2015). https://doi.org/10.1016/j.carbpol.2015.05.079
- Hakomori S. A rapid permethylation of glycolipid andpolysaccharide catalyzed by methylsuphinyl carbanion indimethyl sulfoxide. J. Biochem (Tokyo) 55: 205-208 (1964)
- Honda S, Akao E, Suzuki S, Okuda M, Kakehi K, Nakamuraa J. High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl5-pyrazolone derivatives. Anal. Biochem. 180: 351-357 (1989) https://doi.org/10.1016/0003-2697(89)90444-2
- Ji X, Peng Q, Wang M. Anti-colon-cancer effects of polysaccharides: A mini-review of the mechanisms. Int. J. Biol. Macromol. 114: 1127-1133 (2018) https://doi.org/10.1016/j.ijbiomac.2018.03.186
- Kabat EA, Mayer MM. Experimental Immunochemistry. Thormas Publisher. Illinois. USA. pp. 133-240 (1971)
- Kim CJ, Kim EK. Physicochemical properties and processing characteristics of taro and taro flour. Food Ind. Nutr. 3: 55-64 (1998)
- Lee SJ, Rim HK, Jung JY, An HJ, Shin JS, Cho CW, Rhee YK, Hong HD, Lee KT. Immunostimulatory activity of polysaccharides from Cheonggukjang. Food Chem. Toxicol. 59: 476-484 (2013) https://doi.org/10.1016/j.fct.2013.06.045
- Li CY, Meng L, Liu B, Bao JK. Galanthus nivalis agglutinin (GNA)-related lectins: traditional proteins, burgeoning drugs?. Curr. Chem. Biol. 3: 323-333 (2009) https://doi.org/10.2174/187231309789054913
- Li H, Dong Z, Liu X, Chen H, Lai F, Zhang M. Structure characterization of two novel polysaccharides from Colocasia esculenta(taro) and a comparative study of their immunomodulatory activities. J. Funct. Foods. 42: 47-57 (2018) https://doi.org/10.1016/j.jff.2017.12.067
- McCleary BV, Matheson NK. Enzymatic analysis of polysaccharide structure. Adv Carbohydrate Chem Biochem. 44: 147-276 (1987) https://doi.org/10.1016/S0065-2318(08)60079-7
- Meng X, Liang H, Luo L. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr. Res. 424: 30-41 (2016) https://doi.org/10.1016/j.carres.2016.02.008
- Moon JH, Sung JH, Choi IW, Kim YS. Anti-Obesity and hypolipidemic activity of taro powder in mice fed with high fat and cholesterol diets. Korean J. Food Sci. Technol. 42: 620-626 (2010)
- Park HR, Lee HS, Cho SY, Kim YS, Shin KS. Anti-metastatic effect of polysaccharide isolated from Colocasia esculenta is exerted through immunostimulation. Int. J. Mol. Med. 31: 361-368 (2013) https://doi.org/10.3892/ijmm.2012.1224
- Pereira PR, Aguila EMD, Vericimo MA, Zingali RB, Paschoalin VMF, Silva JT. Purification and pharacterization of the lectin from taro (Colocasia esculenta) and its effect on mouse splenocyte proliferation in vitro and in vivo. Protein J. 33: 92-99 (2014) https://doi.org/10.1007/s10930-013-9541-y
- Pereira PR, Winter HC, Vericimo MA, Meagher JL, Stuckey JA, Goldstein IJ, Paschoalin VMF, Silva JT Structural analysis and binding properties of isoforms of tarin, the GNA-related lectin from Colocasia esculenta. Biochim. Biophys. Acta 1854: 20-30 (2015) https://doi.org/10.1016/j.bbapap.2014.10.013
- Prajapati R, Kalariya M, Umbarkar R, Parmar S, Sheth N. Colocasia esculenta: a potent indigenous plant. Int. J. Nutr. Pharmacol. Neurol. Dis. 1: 90-96 (2011) https://doi.org/10.4103/2231-0738.84188
- Prajapati VD, Jani G K, Moradiya NG, Randeria NP, Nagar BJ, Naikwadi NN, Variya BC. Galactomannan: a versatile biodegradable seed polysaccharide. Int. J. Biol. Macromol. 60: 83-92 (2013) https://doi.org/10.1016/j.ijbiomac.2013.05.017
- Shin KS. Roles of sugar chains in immunostimulatory activity of the polysaccharide isolated from Angelica gigas. Korean J. Food Sci. Technol. 51: 336-342 (2019) https://doi.org/10.9721/KJFST.2019.51.4.336
- Simsek S, El S.N. In vitro starch digestibility, estimated glycemic index and antioxidant potential of taro (Colocasia esculenta L. Schott) corm. Food Chem. 168: 257-261 (2015) https://doi.org/10.1016/j.foodchem.2014.07.052
- Sweet DP, Shapiro RH, Albersheim P. Quantitativeanalysis by various g.l.c. response factor theories for partially methylated and partially ethylated alditol acetates. Carbohydr. Res. 40: 217-225 (1975) https://doi.org/10.1016/S0008-6215(00)82604-X
- Vaikundamoorthy R, Krishnamoorthy V, Vilwanathan R, Rajendran R. Structural characterization and anticancer activity (MCF7 and MDA-MB-231) of polysaccharides fractionated from brown seaweed Sargassum wightii. Int. J. Biol. Macromol. 111: 1229-1237 (2018) https://doi.org/10.1016/j.ijbiomac.2018.01.125
- Xu X, Ya, H, Tang J, Chen J, Zhang X. Polysaccharides in Lentinus edodes: Isolation, structure, immunomodulating activity and future prospective. Crit. Rev. Food Sci. Nutr. 54: 474-487 (2014) https://doi.org/10.1080/10408398.2011.587616
- Yamada H, Ra KS, Kiyohara K, Cyong JC, Otsuka Y. Structural characterization of an anti-complementary pecticpolysaccharide from the roots of Bupleurum falcatum L. Carbohydr. Res. 189: 209-226 (1989) https://doi.org/10.1016/0008-6215(89)84098-4
- Yu Y, Shen M, Song Q, Xie J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym. 183: 91-101 (2018) https://doi.org/10.1016/j.carbpol.2017.12.009
- Yu Y, Shen M, Wang Z, Wang Y, Xie M, Xie J. Sulfated polysaccharide from Cyclocarya paliurus enhances the immunomodulatory activity of macrophages. Carbohydr. Polym. 174: 669-676 (2017) https://doi.org/10.1016/j.carbpol.2017.07.009
- Zhang L, Liu Y, Ke Y, Li Y, Luo X, Li C, Zhang Z, Liu A, Shen L, Chen H, Hu B, Wu H, Wu W, Lin D, Li S. Antidiabetic activity of polysaccharides from Suillellus luridus in streptozotocininduced diabetic mice. Int. J. Biol. Macromol. 119: 134-140 (2018) https://doi.org/10.1016/j.ijbiomac.2018.07.109
- Zhang J, Wen C, Duan Y, Zhang H, Ma H. Advance in Cordyceps militaris (Linn) Link polysaccharides: Isolation, structure, and bioactivities: A review. Int. J. Biol. Macromol. 132: 906-914 (2019) https://doi.org/10.1016/j.ijbiomac.2019.04.020