DOI QR코드

DOI QR Code

Structural elucidation of immuno-stimulating polysaccharide, galactomannan isolated from Colocasia esculenta

토란으로부터 분리한 면역활성 다당 galactomannan의 구조적 특성 규명

  • Lee, Hee-Won (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Shin, Kwang-Soon (Department of Food Science and Biotechnology, Kyonggi University)
  • 이희원 (경기대학교 식품생물공학과) ;
  • 신광순 (경기대학교 식품생물공학과)
  • Received : 2020.10.12
  • Accepted : 2020.11.05
  • Published : 2020.12.31

Abstract

To elucidate the structure-function relationship of polysaccharides obtained from Colocasia esculenta, the immuno-stimulating polysaccharide, CE-4a was purified to homogeneity from the crude polysaccharide (CE) extracted from the corms of C. esculenta by two subsequent column chromatographies using DEAE-Sepharose FF and Sephadex G-100, and analysis of their immuno-stimulatory activities and structure were conducted. CE-4a showed an increase in anti-complementary activity in a dose-dependent fashion. The molecular mass was estimated to be 182.4 kDa, which mainly consisted of galactose (43.5%) and mannose (18.2%). Methylation analysis indicated that CE-4a comprised at least 10 different glycosyl linkages, such as terminal Galp, 3-linked Galp, and 4-linked Manp, as well as a characteristic linkage, 2,4,6-branched Manp residue. To analyze the fine structure of CE-4a, it was sequentially digested using endo-α-(1→4)-polygalacturonase, exo-α-galactosidase and endo-β-1,4-D-mannanase. These analyses suggested that CE-4a is to be a highly branched galactomannan with a (1→4)-mannan backbone and galactopyranosyl oligosaccharide side chains.

토란에 존재하는 점질다당의 새로운 이용방안을 모색하기 위하여 토란으로부터 다당을 분리하여 항보체 활성을 평가하고 구조 분석을 행하였다. 토란으로부터 분리한 조다당 CE를 이온교환수지와 Sephadex G-100 column를 이용하여 정제하였고, 그 중 수율과 활성이 양호한 CE-4a를 최종 획분으로 선정하였다. 초기 면역반응에 중요한 역할을 하는 보체계에 대한 토란 다당의 활성화 여부를 측정한 결과 양성대조군인 PSK에 준하는 강력한 항보체 활성을 보였고, 시료의 농도차이를 두어 실험한 결과 농도 의존적임을 알 수 있었다. CE-4a는 분자량 약 182.4 kDa의 다당체로 구성당 조성을 확인한 결과 Man, Gal 및 GalA를 높은 비율로 함유하고 있었다. 본 당쇄의 결합양식을 규명하기 위하여 methlyation analysis를 행한 결과 CE-4a는 terminal Galp. 3-linked-Galp, 4-linked Manp, 2,4,6-linked Manp를 포함한 총 10종의 결합으로 구성되어 있었다. 또한 CE-4a의 전체구조를 추정하기 위하여 endo-α-(1→4)-polygalacturonase, exo-α-galactosidase 및 endo-β-(1→4)-mannanase를 이용한 연속 가수분해 처리 및 해석을 행하였다. 결과를 종합하면, 토란 유래 다당 CE-4a는 (1→4)-mannan 주쇄로 존재하며 주쇄인 mannose의 C(O)6 위치에서 한가닥 또는 C(O)2, C(O)6 위치에서 동시에 두가닥의 측쇄가 연결되어 존재하고, 측쇄는 주로 galacto oligo당이 측쇄로 분지된 특징이 있음을 확인할 수 있었다.

Keywords

References

  1. Aspinall GO. Chemical characterization and structure determination of polysaccharides. Vol.1, pp 35-45. In: The Polysaccharides. Aspinall GO (ed). Academic Press, New York, USA (1982)
  2. Cho CW, Han CJ, Rhee YK, Lee YC, Shin KS, Shin JS, Lee KT, Hong HD. Cheonggukjang polysaccharides enhance immune activities and prevent cyclophosphamide-induced immunosuppression. Int. J. Biol. Macromol. 72: 519-525 (2015) https://doi.org/10.1016/j.ijbiomac.2014.09.010
  3. Choi JH, Shin KS. Structural analysis of anti-metastatic polysaccharides isolated from Opuntia humifusa. J Korean Soc Food Sci Nutr. 40: 214-222 (2011) https://doi.org/10.3746/JKFN.2011.40.2.214
  4. Di T, Chen G, Sun Y, Ou S, Zeng X, Ye H. Antioxidant and immunostimulating activities in vitro of sulfated polysaccharides isolated from Gracilaria rubra. J. Funct. Foods. 28: 64-75 (2017) https://doi.org/10.1016/j.jff.2016.11.005
  5. Ferreira, S. S., Passos, C. P., Madureira, P., Vilanova, M., Coimbra, M. A. Structure-function relationships of immunostimulatory polysaccharides: A review. Carbohydr. Polym. 132: 378-396 (2015). https://doi.org/10.1016/j.carbpol.2015.05.079
  6. Hakomori S. A rapid permethylation of glycolipid andpolysaccharide catalyzed by methylsuphinyl carbanion indimethyl sulfoxide. J. Biochem (Tokyo) 55: 205-208 (1964)
  7. Honda S, Akao E, Suzuki S, Okuda M, Kakehi K, Nakamuraa J. High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl5-pyrazolone derivatives. Anal. Biochem. 180: 351-357 (1989) https://doi.org/10.1016/0003-2697(89)90444-2
  8. Ji X, Peng Q, Wang M. Anti-colon-cancer effects of polysaccharides: A mini-review of the mechanisms. Int. J. Biol. Macromol. 114: 1127-1133 (2018) https://doi.org/10.1016/j.ijbiomac.2018.03.186
  9. Kabat EA, Mayer MM. Experimental Immunochemistry. Thormas Publisher. Illinois. USA. pp. 133-240 (1971)
  10. Kim CJ, Kim EK. Physicochemical properties and processing characteristics of taro and taro flour. Food Ind. Nutr. 3: 55-64 (1998)
  11. Lee SJ, Rim HK, Jung JY, An HJ, Shin JS, Cho CW, Rhee YK, Hong HD, Lee KT. Immunostimulatory activity of polysaccharides from Cheonggukjang. Food Chem. Toxicol. 59: 476-484 (2013) https://doi.org/10.1016/j.fct.2013.06.045
  12. Li CY, Meng L, Liu B, Bao JK. Galanthus nivalis agglutinin (GNA)-related lectins: traditional proteins, burgeoning drugs?. Curr. Chem. Biol. 3: 323-333 (2009) https://doi.org/10.2174/187231309789054913
  13. Li H, Dong Z, Liu X, Chen H, Lai F, Zhang M. Structure characterization of two novel polysaccharides from Colocasia esculenta(taro) and a comparative study of their immunomodulatory activities. J. Funct. Foods. 42: 47-57 (2018) https://doi.org/10.1016/j.jff.2017.12.067
  14. McCleary BV, Matheson NK. Enzymatic analysis of polysaccharide structure. Adv Carbohydrate Chem Biochem. 44: 147-276 (1987) https://doi.org/10.1016/S0065-2318(08)60079-7
  15. Meng X, Liang H, Luo L. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr. Res. 424: 30-41 (2016) https://doi.org/10.1016/j.carres.2016.02.008
  16. Moon JH, Sung JH, Choi IW, Kim YS. Anti-Obesity and hypolipidemic activity of taro powder in mice fed with high fat and cholesterol diets. Korean J. Food Sci. Technol. 42: 620-626 (2010)
  17. Park HR, Lee HS, Cho SY, Kim YS, Shin KS. Anti-metastatic effect of polysaccharide isolated from Colocasia esculenta is exerted through immunostimulation. Int. J. Mol. Med. 31: 361-368 (2013) https://doi.org/10.3892/ijmm.2012.1224
  18. Pereira PR, Aguila EMD, Vericimo MA, Zingali RB, Paschoalin VMF, Silva JT. Purification and pharacterization of the lectin from taro (Colocasia esculenta) and its effect on mouse splenocyte proliferation in vitro and in vivo. Protein J. 33: 92-99 (2014) https://doi.org/10.1007/s10930-013-9541-y
  19. Pereira PR, Winter HC, Vericimo MA, Meagher JL, Stuckey JA, Goldstein IJ, Paschoalin VMF, Silva JT Structural analysis and binding properties of isoforms of tarin, the GNA-related lectin from Colocasia esculenta. Biochim. Biophys. Acta 1854: 20-30 (2015) https://doi.org/10.1016/j.bbapap.2014.10.013
  20. Prajapati R, Kalariya M, Umbarkar R, Parmar S, Sheth N. Colocasia esculenta: a potent indigenous plant. Int. J. Nutr. Pharmacol. Neurol. Dis. 1: 90-96 (2011) https://doi.org/10.4103/2231-0738.84188
  21. Prajapati VD, Jani G K, Moradiya NG, Randeria NP, Nagar BJ, Naikwadi NN, Variya BC. Galactomannan: a versatile biodegradable seed polysaccharide. Int. J. Biol. Macromol. 60: 83-92 (2013) https://doi.org/10.1016/j.ijbiomac.2013.05.017
  22. Shin KS. Roles of sugar chains in immunostimulatory activity of the polysaccharide isolated from Angelica gigas. Korean J. Food Sci. Technol. 51: 336-342 (2019) https://doi.org/10.9721/KJFST.2019.51.4.336
  23. Simsek S, El S.N. In vitro starch digestibility, estimated glycemic index and antioxidant potential of taro (Colocasia esculenta L. Schott) corm. Food Chem. 168: 257-261 (2015) https://doi.org/10.1016/j.foodchem.2014.07.052
  24. Sweet DP, Shapiro RH, Albersheim P. Quantitativeanalysis by various g.l.c. response factor theories for partially methylated and partially ethylated alditol acetates. Carbohydr. Res. 40: 217-225 (1975) https://doi.org/10.1016/S0008-6215(00)82604-X
  25. Vaikundamoorthy R, Krishnamoorthy V, Vilwanathan R, Rajendran R. Structural characterization and anticancer activity (MCF7 and MDA-MB-231) of polysaccharides fractionated from brown seaweed Sargassum wightii. Int. J. Biol. Macromol. 111: 1229-1237 (2018) https://doi.org/10.1016/j.ijbiomac.2018.01.125
  26. Xu X, Ya, H, Tang J, Chen J, Zhang X. Polysaccharides in Lentinus edodes: Isolation, structure, immunomodulating activity and future prospective. Crit. Rev. Food Sci. Nutr. 54: 474-487 (2014) https://doi.org/10.1080/10408398.2011.587616
  27. Yamada H, Ra KS, Kiyohara K, Cyong JC, Otsuka Y. Structural characterization of an anti-complementary pecticpolysaccharide from the roots of Bupleurum falcatum L. Carbohydr. Res. 189: 209-226 (1989) https://doi.org/10.1016/0008-6215(89)84098-4
  28. Yu Y, Shen M, Song Q, Xie J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym. 183: 91-101 (2018) https://doi.org/10.1016/j.carbpol.2017.12.009
  29. Yu Y, Shen M, Wang Z, Wang Y, Xie M, Xie J. Sulfated polysaccharide from Cyclocarya paliurus enhances the immunomodulatory activity of macrophages. Carbohydr. Polym. 174: 669-676 (2017) https://doi.org/10.1016/j.carbpol.2017.07.009
  30. Zhang L, Liu Y, Ke Y, Li Y, Luo X, Li C, Zhang Z, Liu A, Shen L, Chen H, Hu B, Wu H, Wu W, Lin D, Li S. Antidiabetic activity of polysaccharides from Suillellus luridus in streptozotocininduced diabetic mice. Int. J. Biol. Macromol. 119: 134-140 (2018) https://doi.org/10.1016/j.ijbiomac.2018.07.109
  31. Zhang J, Wen C, Duan Y, Zhang H, Ma H. Advance in Cordyceps militaris (Linn) Link polysaccharides: Isolation, structure, and bioactivities: A review. Int. J. Biol. Macromol. 132: 906-914 (2019) https://doi.org/10.1016/j.ijbiomac.2019.04.020