DOI QR코드

DOI QR Code

Analysis of glucosinolates and their metabolites from napa cabbage (Brassica rapa subsp. Pekinensis) and napa cabbage kimchi using UPLC-MS/MS

UPLC-MS/MS를 이용한 배추와 배추김치의 글루코시놀레이트 및 대사체 분석

  • Kim, Jaecheol (Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University) ;
  • Park, Hyo Sun (Department of Food and Nutrition, Chung-Ang University) ;
  • Hwang, Keum Taek (Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University) ;
  • Moon, BoKyung (Department of Food and Nutrition, Chung-Ang University) ;
  • Kim, Suna (Division of Human Ecology, College of Natural Science, Korea National Open University)
  • 김재철 (서울대학교 생활과학대학 식품영양학과.생활과학연구소) ;
  • 박효순 (중앙대학교 생명공학대학 식품공학부 식품영양전공) ;
  • 황금택 (서울대학교 생활과학대학 식품영양학과.생활과학연구소) ;
  • 문보경 (중앙대학교 생명공학대학 식품공학부 식품영양전공) ;
  • 김선아 (한국방송통신대학교 자연과학대학 생활과학부 식품영양학전공)
  • Received : 2020.09.23
  • Accepted : 2020.10.22
  • Published : 2020.12.31

Abstract

In this study, we analyzed glucosinolates and their metabolites in the inner and outer parts of napa cabbage (NC; Brassica rapa subsp. pekinensis) and napa cabbage kimchi (NKC) using UPLC-ESI-MS/MS. In the extracts from NC and NKC, glucobrassicanapin (m/z 386), glucoalyssin (m/z 450), glucobrassicin (m/z 447), 4-methoxyglucobrassicin (m/z 477), and neoglucobrassicin (m/z 477) were detected using the MS scan mode ([M-H]-), and gluconapin (m/z 372→97), progoitrin (m/z 388→97), glucoiberin (m/z 422→97), 4-methoxyglucobrassicin (m/z 477→97), and neoglucobrassicin (m/z 477→447) were detected using the MS/MS MRM mode ([M-H]-). Ascorbigen (m/z 306→130) and indole-3-carboxaldehyde (I3A; m/z 146→118), which were metabolites of glucobrassicins, were detected using the MS/MS MRM ([M+H]+) mode. The peak intensities of ascorbigen in the extract from the inner and outer parts of NC were significantly higher than those of the NKC extract (p<0.05); however, there was no significant difference in I3A peak intensity between the NC and NKC extracts.

본 연구에서는 부위별 배추와 배추김치에 함유되어 있는 글루코시놀레이트류의 조성을 UPLC-MS/MS를 이용하여 탐색하고, 인돌류 대사체를 MS/MS를 이용하여 분석한 결과, 글루코시놀레이트류는 음이온 모드([M-H]-)에서 검출되었으며, glucobrassicanapin (m/z 386), glucoalyssin (m/z 450), glucobrassicin (m/z 447), 4-methoxyglucobrassicin (m/z 477), neoglucobrassicin (m/z 477)는 MS scan 모드에서, gluconapin (m/z 372→97), progoitrin (m/z 388→97), glucoiberin (m/z 422→97), 4-methoxyglucobrassicin (m/z 477→97), neoglucobrassicin (m/z 477→447)는 MS/MS MRM 모드에서 검출되었다. Glucobrassicin과 같은 인돌기 함유 글루코시놀레이트류들이 대사되어 생성되는 인돌류 대사체로는 ascorbigen (m/z 306→130)과 I3A (m/z 146→118)가 MS/MS MRM ([M+H]+) 모드에서 검출되었다. Ascorbigen은 NKC보다 IPC와 OPC에 유의적으로 많이 함유되어 있었다. I3A는 NKC에 가장 많이 함유되어 있었으나 시료 간 유의적인 차이는 없었다. 본 연구를 통하여 배추와 배추김치에 존재하는 글루코시놀레이트류와 그 대사체인 인돌류 물질을 UPLC-MS/MS를 이용하여 분석할 수 있었다.

Keywords

References

  1. Ahn JE, Kim JK, Lee HR, Eom HJ, Han NS. Isolation and characterization of a bacteriocin-producing Lactobacillus sakei B16 from Kimchi. J. Korean Soc. Food Sci. Nutr. 41: 721-726 (2012) https://doi.org/10.3746/JKFN.2012.41.5.721
  2. Anderton, MJ, Manson MM, Verschoyle RD, Gescher A, Lamb JH, Farmer PB, Steward WP, Williams ML. Pharmacokinetics and tissue disposition of indole-3-carbinol and its acid condensation products after oral administration to mice. Clin. Cancer Res. 10: 5233-5241 (2004) https://doi.org/10.1158/1078-0432.CCR-04-0163
  3. Asbury GR, Klasmeier J, Hill Jr. HH. Analysis of explosives using electrospray ionization/ion mobility spectrometry (ESI/IMS). Talanta 50: 1291-1298 (2000) https://doi.org/10.1016/S0039-9140(99)00241-6
  4. Barba FJ, Nikmaram N, Roohinejad S, Khelfa A, Zhu Z, Koubaa M. Bioavailability of glucosinolates and their breakdown products: impact of processing. Front. Nutr. 3: 24 (2016)
  5. Barbieri G, Pernice R, Maggio A, De Pascale S, Fogliano V. Glucosinolates profile of Brassica rapa L. subsp. Sylvestris L. Janch. var. esculenta Hort. Food Chem. 107: 1687-1691 (2008) https://doi.org/10.1016/j.foodchem.2007.09.054
  6. Bhandari SR, Rhee J, Choi CS, Jo JS, Shin YK, Lee JG. Profiling of individual desulfo-glucosinolate content in cabbage head (Brassica oleracea var. capitata) germplasm. Molecules 25: 1860 (2020) https://doi.org/10.3390/molecules25081860
  7. Cho SD, Bang HY, Lee EJ, Kim GH. Quality characteristics of spring napa cabbage kimchi harvested at different times. J. Korean Soc. Food Cult. 31: 188-193 (2016) https://doi.org/10.7318/KJFC/2016.31.2.188
  8. da Rocha Curvelo JA, Barreto ALS, dos Anjos CA, Santana RS, Alonso AN, Romanos MTV, de Moura KCG, Carneiro PF, Portela MB, Pinto MCFR, de Araujo Soares RM. β-Indol carboxaldehyde, an imidazole synthesized from naphthoquinone β-lapachone downregulates Candida albicans biofilm. Med. Chem. Res. 24: 1155-1161 (2015) https://doi.org/10.1007/s00044-014-1202-y
  9. Gratacos-Cubarsi M, Ribas-Agusti A, Garcia-Regueiro JA, Castellari M. Simultaneous evaluation of intact glucosinolates and phenolic compounds by UPLC-DAD-MS/MS in Brassica oleracea L. var. botrytis. Food Chem. 121: 257-263 (2010) https://doi.org/10.1016/j.foodchem.2009.11.081
  10. Hong E, Kim SJ, Kim GH. Identification and quantitative determination of glucosinolates in seeds and edible parts of Korean Chinese cabbage. Food Chem. 128: 1115-1120 (2011) https://doi.org/10.1016/j.foodchem.2010.11.102
  11. Hrncirik K, Valusek J, Velisek J. A study on the formation and stability of ascorbigen in an aqueous system. Food Chem. 63: 349-355 (1998) https://doi.org/10.1016/S0308-8146(98)00016-8
  12. Hrncirik K, Valusek J, Velisek J. Investigation of ascorbigen as a breakdown product of glucobrassicin autolysis in Brassica vegetables. Eur. Food Res. Technol. 212: 576-581 (2001) https://doi.org/10.1007/s002170100291
  13. Huang H, Jiang X, Xiao Z, Yu L, Pham Q, Sun J, Chen P, Yokoyama W, Yu LL, Luo YS, Wang, T. T. Red cabbage microgreens lower circulating low-density lipoprotein (LDL), liver cholesterol, and inflammatory cytokines in mice fed a high-fat diet. J. Agric. Food Chem. 64: 9161-9171 (2016) https://doi.org/10.1021/acs.jafc.6b03805
  14. Hwang ES. Changes in myrosinase activity and total glucosinolate levels in Korean Chinese cabbages by salting conditions. Korean J. Food Cookery Sci. 26: 104-109 (2010)
  15. Hwang ES, Hong EY, Kim GH. Determination of bioactive compounds and anti-cancer effect from extracts of Korean cabbage and cabbage. Korean J. Food Nutr. 25: 259-265 (2012) https://doi.org/10.9799/ksfan.2012.25.2.259
  16. Ishida M, Hara M, Fukino N, Kakizaki T, Morimitsu Y. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed. Sci. 64: 48-59 (2014) https://doi.org/10.1270/jsbbs.64.48
  17. Jang M, Kim GH. Glucosinolate and isothiocyabate contents according to processing of Kimchi cabbage (Brassica rapa L. ssp. pekinensis). Korean J. Food Preserv. 24: 367-373 (2017) https://doi.org/10.11002/KJFP.2017.24.3.367
  18. Kang JH, Woo HJ, Park JB, Chun HH, Park CW, Song KB. Effect of storage in pallet-unit controlled atmosphere on the quality of Chinese cabbage (Brassica rapa L. spp. pekinensis) used in kimchi manufacturing. LWT-Food Sci. Technol. 111: 436-442 (2019) https://doi.org/10.1016/j.lwt.2019.05.069
  19. Kim HW, Jang JJ, Kim NH, Lee NY, Cho TJ, Kim SH, Rhee MS. Factors that determine the microbiological quality of ready-to-use salted napa cabbage (Brassica pekinensis): Season and distribution temperature. Food Control 87: 1-8 (2018a) https://doi.org/10.1016/j.foodcont.2017.12.009
  20. Kim B, Mun EG, Kim D, Kim Y, Park Y, Lee HJ, Cha YS. A survey of research papers on the health benefits of kimchi and kimchi lactic acid bacteria. J. Nutr. Health 51: 1-13 (2018b) https://doi.org/10.4163/jnh.2018.51.1.1
  21. Lee JG, Bonnema G, Zhang N, Kwak JH, de Vos RC, Beekwilder J. Evaluation of glucosinolate variation in a collection of turnip (Brassica rapa) germplasm by the analysis of intact and desulfo glucosinolates. J. Agric. Food Chem. 61: 3984-3993 (2013) https://doi.org/10.1021/jf400890p
  22. Lee MK, Chun JH, Byeon DH, Chung SO, Park SU, Park S, Arasu MV, Al-Dhabi NA, Lim YP, Kim SJ. Variation of glucosinolates in 62 varieties of Chinese cabbage (Brassica rapa L. ssp. pekinensis) and their antioxidant activity. LWT-Food Sci. Technol. 58: 93-101 (2014a) https://doi.org/10.1016/j.lwt.2014.03.001
  23. Lee GR, Kim YJ, Chun JH, Lee MK, Ryu DK, Park S, Chung SO, Park SU, Lim YP, Kim SJ. Variation of glucosinolate contents of 'Sinhongssam' grown under various light sources, periods, and light intensities. Korean J. Agric. Sci. 41: 125-133 (2014b) https://doi.org/10.7744/CNUJAS.2014.41.2.125
  24. Martinez-Villaluenga C, Penas E, Frias J, Ciska E, Honke J, Piskula MK, Kozlowska H, Vidal-Valverde C. Influence of fermentation conditions on glucosinolates, ascorbigen, and ascorbic acid content in white cabbage (Brassica oleracea var. capitata cv. Taler) cultivated in different seasons. J. Food Sci. 74: 62-67 (2009)
  25. Martinez-Villaluenga C, Penas E, Sidro B, Ullate M, Frias J, VidalValverde C. White cabbage fermentation improves ascorbigen content, antioxidant and nitric oxide production inhibitory activity in LPS-induced macrophages. LWT-Food Sci. Technol. 46: 77-83 (2012) https://doi.org/10.1016/j.lwt.2011.10.023
  26. Palani K, Harbaum-Piayda B, Meske D, Keppler JK, Bockelmann W, Heller KJ, Schwarz K. Influence of fermentation on glucosinolates and glucobrassicin degradation products in sauerkraut. Food Chem. 190: 755-762 (2016) https://doi.org/10.1016/j.foodchem.2015.06.012
  27. Park KY, Jeong JK, Lee YE, Daily JW. Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J. Med. Food 17: 6-20 (2014) https://doi.org/10.1089/jmf.2013.3083
  28. Park J, Lee S, Kim B, Woo E, Lee J, Han E, Lee Y, Park Y. Isolation of myrosinase and glutathione S-transferase genes and transformation of these genes to develop phenylethylisothiocyanate enriching Chinese cabbage. Kor. J. Hort. Sci. Technol. 29: 623-632 (2011)
  29. Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B. Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea var. capitata) cooked for different durations. J. Agric. Food Chem. 54: 7628-7634 (2006) https://doi.org/10.1021/jf0607314
  30. Seong GU, Hwang IW, Chung SK. Antioxidant capacities and polyphenolics of Chinese cabbage (Brassica rapa L. ssp. pekinensis) leaves. Food Chem. 199: 612-618 (2016) https://doi.org/10.1016/j.foodchem.2015.12.066
  31. Shawon RA, Kang BS, Lee SG, Kim SK, Lee HJ, Katrich E, Goristein S, Ku YG. Influence of drought stress on bioactive compounds, antioxidant enzymes and glucosinolate contents of Chinese cabbage (Brassica rapa). Food Chem. 308: 125657 (2020) https://doi.org/10.1016/j.foodchem.2019.125657
  32. Sondhi SM, Dinodia M, Kumar A. Synthesis, anti-inflammatory and analgesic activity evaluation of some amidine and hydrazone derivatives. Bioorg. Med. Chem. 14: 4657-4663 (2006) https://doi.org/10.1016/j.bmc.2006.02.014
  33. Wagner AE, Rimbach G. Ascorbigen: chemistry, occurrence, and biologic properties. Clin. Dermatol. 27: 217-224 (2009) https://doi.org/10.1016/j.clindermatol.2008.01.012
  34. Wu X, Sun J, Haytowitz DB, Harnly JM, Chen P, Pehrsson PR. Challenges of developing a valid dietary glucosinolate database. J. Food Compos. Anal. 64: 78-84 (2017) https://doi.org/10.1016/j.jfca.2017.07.014