DOI QR코드

DOI QR Code

Optimum design of shape and size of truss structures via a new approximation method

  • 투고 : 2019.08.06
  • 심사 : 2020.08.15
  • 발행 : 2020.12.25

초록

The optimum design of truss structures is one of the significant categories in structural optimization that has widely been applied by researchers. In the present study, new mathematical programming called Consistent Approximation (CONAP) method is utilized for the simultaneous optimization of the size and shape of truss structures. The CONAP algorithm has already been introduced to optimize some structures and functions. In the CONAP algorithm, some important parameters are designed by employing design sensitivities to enhance the capability of the method and its consistency in various optimum design problems, especially structural optimization. The cross-sectional area of the bar elements and the nodal coordinates of the truss are assumed to be the size and shape design variables, respectively. The displacement, allowable stress and the Euler buckling stress are taken as the design constraints for the problem. In the proposed method, the primary optimization problem is replaced with a sequence of explicit sub-problems. Each sub-problem is efficiently solved using the sequential quadratic programming (SQP) algorithm. Several truss structures are designed by employing the CONAP method to illustrate the efficiency of the algorithm for simultaneous shape and size optimization. The optimal solutions are compared with some of the mathematical programming algorithms, the approximation methods and metaheuristic algorithms those reported in the literature. Results demonstrate that the accuracy of the optimization is improved and the convergence rate speeds up.

키워드

참고문헌

  1. Ahrari, A., and Atai, A. A. (2013), "Fully stressed design evolution strategy for shape and size optimization of truss structures", Comput. Struct, 123, 58-67. https://doi.org/10.1016/j.compstruc.2013.04.013
  2. Ahrari, A., Atai, A. A., and Deb, K. (2015), "Simultaneous topology, shape and size optimization of truss structures by fully stressed design based on evolution strategy", Eng. Optim, 47(8), 1063-1084. https://doi.org/10.1080/0305215X.2014.947972
  3. Arora, J. S. (1989), Introduction to Optimum Design, McGraw-Hill, New York, USA.
  4. Belegundu, A. D., and Arora, J. S. (1985), "A study of mathematical programmingmethods for structural optimization. Part II: Numerical results", Int. J. Numer. Methods Eng, 21(9), 1601-1623. https://doi.org/10.1002/nme.1620210905
  5. Cao, H., Qian, X., Chen, Z., and Zhu, H. (2017), "Enhanced particle swarm optimization for size and shape optimization of truss structures", Eng. Optim, 49(11), 1939-1956. https://doi.org/10.1080/0305215X.2016.1273912
  6. Cazacu, R., and Grama, L. (2014), "Steel truss optimization using genetic algorithms and FEA", Proceedings of the 7th International Conference Interdisciplinarity in Engineering (INTER-ENG 2013), 339-346.
  7. Chu, D. N. (1997), "Evolutionary structural optimization method for systems with stiffness and displacement constraints", Ph.D. Dissertation, Department of Civil and Building Engineering, Victoria University of Technology, Melbourne, Australia.
  8. Darvishi, P., and Shojaee, S. (2018), "Size and geometry optimization of truss structures using the combination of DNA computing algorithm and generalized convex approximation method", Int. J. Optim. Civ. Eng, 8(4), 625-656.
  9. Dede, T., and Ayvaz, Y. (2015), "Combined size and shape optimization of structures with a new meta-heuristic algorithm", Appl. Soft Comput. J, 28, 250-258. https://doi.org/10.1016/j.asoc.2014.12.007
  10. Degertekin, S. O., Lamberti, L., and Ugur, I. B. (2019), "Discrete sizing/layout/topology optimization of truss structures with an advanced Jaya algorithm", Appl. Soft Comput. J, 79, 363-390. https://doi.org/10.1016/j.asoc.2019.03.058
  11. Felix, J. E. (1981), "Shape optimization of trusses subject to strength, displacement, and frequency constraints", Master's Thesis, Naval Postgraduate School.
  12. Fleury, C. (1979), "A unified approach to structural weight minimization", Comput. Methods Appl. Mech. Eng, 20(1), 17-38. https://doi.org/10.1016/0045-7825(79)90056-2
  13. Fleury, C. (1989), "CONLIN: An efficient dual optimizer based on convex approximation concepts", Struct. Optim, 1(2), 81-89. https://doi.org/10.1007/BF01637664
  14. Fleury, C., and Braibant, V. (1986), "Structural optimization: A new dual method using mixed variables", Int. J. Numer. Methods Eng, 23(3), 409-428. https://doi.org/10.1002/nme.1620230307
  15. Ghoddosian, A., and Sheikhi Azqandi, M. (2011), "Using particle swarm optimization for minimization of moment peak in structure", Aust. J. Basic Appl. Sci, 5(8), 1428-1434.
  16. Gholizadeh, S., Barzegar, A., and Gheyratmand, C. (2011), "Shape optimization of structures by modified harmony search", Int. J. Optim. Civ. Eng, 3, 485-494.
  17. Goncalves, M. S., Lopez, R. H., and Miguel, L. F. F. (2015), "Search group algorithm: a new metaheuristic method for the optimization of truss structures", Comput. Struct, 153, 165-184. https://doi.org/10.1016/j.compstruc.2015.03.003
  18. Grygierek, K. (2016), "Optimization of trusses with self-adaptive approach in genetic algorithms", Archit. Civ. Eng. Environ. J, 9(4), 67-78.
  19. Habibi, A. R. (2012), "New approximation method for structural optimization", J. Comput. Civ. Eng, 26(2), 236-247. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000133
  20. Hansen, S. R., and Vanderplaats, G. N. (1990). "Approximation method for configuration optimization of trusses." AIAA J, 28(1), 161-168. https://doi.org/10.2514/3.10367
  21. Hosseini, S. S., Hamidi, S. A., Mansuri, M., and Ghoddosian, A. (2015), "Multi objective particle swarm optimization (MOPSO) for size and shape optimization of 2D truss structures", Period. Polytech. Civ. Eng, 59(1), 9-14. https://doi.org/10.3311/PPci.7341
  22. Hwang, S. F., and He, R. S. (2006), "A hybrid real-parameter genetic algorithm for function optimization", Adv. Eng. Informatics, 20(1), 7-21. https://doi.org/10.1016/j.aei.2005.09.001
  23. Imai, K., and Schmit, L. A. (1981), "Configuration optimization of trusses", J. Struct. Div. ASCE, 107, 745-756. https://doi.org/10.1061/JSDEAG.0005702
  24. Kalatjari, V. R., and Talebpour, M. H. (2018), "Optimization of skeletal structures using improved genetic algorithm based on proposed sampling search space idea", Int. J. Optim. Civ. Eng, 8(3), 415-432.
  25. Kaveh, A., and Ahmadi, B. (2014), "Sizing, geometry and topology optimization of trusses using force method and supervised charged system search", Struct. Eng. Mech, 50(3), 365-382. https://doi.org/10.12989/sem.2014.50.3.365
  26. Kaveh, A., and Mahdavi, V. (2015), "Colliding bodies optimization for size and topology optimization of truss structures", Struct. Eng. Mech, 53(5), 847-865. https://doi.org/10.12989/sem.2015.53.5.847
  27. Kaveh, A., and Talatahari, S. (2011), "An enhanced charged system search for configuration optimization using the concept of fields of forces", Struct. Multidiscip. Optim, 43(3), 339-351. https://doi.org/10.1007/s00158-010-0571-1
  28. Kaveh, A., and Zolghadr, A. (2014), "A new PSRO algorithm for frequency constraint truss shape and size optimization Hybrid View project A new PSRO algorithm for frequency constraint truss shape and size optimization", Struct. Eng. Mech, 52(3), 445-468. https://doi.org/10.12989/sem.2014.52.3.445
  29. Kumar, S., Tejani, G. G., and Mirjalili, S. (2019), "Modified symbiotic organisms search for structural optimization", Eng. Comput, 35(4), 1269-1296. https://doi.org/10.1007/s00366-018-0662-y
  30. Kumar, S., Tejani, G. G., Pholdee, N., and Bureerat, S. (2020), "Multi-objective modified heat transfer search for truss optimization", Eng. Comput.
  31. Kuritz, S. P., and Fleury, C. (1989), "Mixed variable structural optimization using convex linearization techniques", Eng. Optim, 15(1), 27-41. https://doi.org/10.1080/03052158908941140
  32. Lamberti, L. (2008), "An efficient simulated annealing algorithm for design optimization of truss structures", Comput. Struct, 86(19-20), 1936-1953. https://doi.org/10.1016/j.compstruc.2008.02.004
  33. Lamberti, L., and Pappalettere, C. (2003), "Move limits definition in structural optimization with sequential linear programming. Part II: Numerical examples", Comput. Struct, 81(4), 214-238.
  34. Lamberti, L., and Pappalettere, C. (2004). "Improved sequential linear programming formulation for structural weight minimization." Comput. Methods Appl. Mech. Eng, 193(33-35), 3493-3521. https://doi.org/10.1016/j.cma.2003.12.040
  35. Lee, K. S., and Geem, Z. W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct, 82(9-10), 781-798. https://doi.org/10.1016/j.compstruc.2004.01.002
  36. Lee, K. S., and Geem, Z. W. (2005), "A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice", Comput. Methods Appl. Mech. Eng, 194(36-38), 3902-3933. https://doi.org/10.1016/j.cma.2004.09.007
  37. Lee, K. S., Han, S. W., and Geem, Z. W. (2011), "Discrete size and discrete-continuous configuration optimization methods for truss structures using the harmony search algorithm", Int. J. Optim. Civ. Eng, 1(1), 107-126.
  38. Miguel, L. F. F., Lopez, R. H., and Miguel, L. F. F. (2013), "Multimodal size, shape, and topology optimisation of truss structures using the Firefly algorithm", Adv Eng Softw, 56, 23-37. https://doi.org/10.1016/j.advengsoft.2012.11.006
  39. Mortazavi, A., and Togan, V. (2016), "Simultaneous size, shape, and topology optimization of truss structures using integrated particle swarm optimizer", Struct. Multidiscip. Optim, 54(4), 715-736. https://doi.org/10.1007/s00158-016-1449-7
  40. Mortazavi, A., Togan, V., and Nuhoglu, A. (2017a), "An integrated particle swarm optimizer for optimization of truss structures with discrete variables", Struct. Eng. Mech, 61(3), 359-370. https://doi.org/10.12989/sem.2017.61.3.359
  41. Mortazavi, A., Togan, V., and Nuhoglu, A. (2017b), "Weight minimization of truss structures with sizing and layout variables using integrated particle swarm optimizer", J. Civ. Eng. Manag, 23(8), 985-1001. https://doi.org/10.3846/13923730.2017.1348982
  42. Muller, T. E., and Klashorst, E. (2017), "A quantitative comparison between size, shape, topology and simultaneous optimization for truss structures", Lat. Am. J. Solids Struct, 14(12), 2221-2242. https://doi.org/10.1590/1679-78253900
  43. Najian Asl, R., Aslani, M., and Shariat Panahi, M. (2013), Sizing Optimization of Truss Structures Using A Hybridized Genetic Algorithm. NASA ADS.
  44. Nguyena, X. H., and Lee, J. (2015), "Sizing, shape and topology optimization of trusses with energy approach", Struct. Eng. Mech, 56(1), 107-121. https://doi.org/10.12989/sem.2015.56.1.107
  45. Noii, N., Aghayan, I., Hahjirasouliha, I., and Kunt, M. M. (2016), "A new hybrid method for size and topology optimization of truss structures using modified ALGA and QPGA", J. Civ. Eng. Manag, 23(2), 252-262. https://doi.org/10.3846/13923730.2015.1075420
  46. Rahami, H., Kaveh, A., and Gholipour, Y. (2008), "Sizing, geometry and topology optimization of trusses via force method and genetic algorithm", Eng. Struct, 30(9), 2360-2369. https://doi.org/10.1016/j.engstruct.2008.01.012
  47. Rajeev, S., and Krishnamoorthy, C. S. (1997), "Genetic algorithms-based methodologies for design optimization of trusses", J. Struct. Eng, 123(3), 350-358. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:3(350)
  48. Schmit, L. A., and Farshi, B. (1974), "Some approximation concepts for structural synthesis", AIAA J, 12(5), 692-699. https://doi.org/10.2514/3.49321
  49. Serpik, I. N., Alekseytsev, A. V., and Balabin, P. Y. (2017), "Mixed approaches to handle limitations and execute mutation in the genetic algorithm for truss size, shape and topology optimization", Period. Polytech. Civ. Eng, 61(3), 471-482.
  50. Shojaee, S., Arjomand, M., and Khatibinia, M. (2013), "A hybrid algorithm for sizing and layout optimization of truss structures combining discrete PSO and convex approximation", Int. J. Optim. Civ. Eng, 3(1), 57-83.
  51. Sonmez, M. (2011), "Artificial Bee Colony algorithm for optimization of truss structures", Appl. Soft Comput, 11(2), 2406-2418. https://doi.org/10.1016/j.asoc.2010.09.003
  52. Svanberg, K. (1987), "The method of moving asymptotes-a new method for structural optimization", Int. J. Numer. Methods Eng, 24(2), 359-373. https://doi.org/10.1002/nme.1620240207
  53. Tang, W., Tong, L., and Gu, Y. (2005), "Improved genetic algorithm for design optimization of truss structures with sizing, shape and topology variables", Int. J. Numer. Methods Eng, 62(13), 1737-1762. https://doi.org/10.1002/nme.1244
  54. Techasen, T., Wansasueb, K., Panagant, N., Pholdee, N., and Bureerat, S. (2018), "Multiobjective simultaneous topology, shape and sizing optimization of trusses using evolutionary optimizers", Proceedings of the IOP Conference Series: Materials Science and Engineering, 20-29.
  55. Tejani, G. G., Pholdee, N., Bureerat, S., and Prayogo, D. (2018a), "Multiobjective adaptive symbiotic organisms search for truss optimization problems", Knowledge-Based Syst, 161, 398-414. https://doi.org/10.1016/j.knosys.2018.08.005
  56. Tejani, G. G., Pholdee, N., Bureerat, S., Prayogo, D., and Gandomi, A. H. (2019), "Structural optimization using multi-objective modified adaptive symbiotic organisms search", Expert Syst. Appl, 125, 425-441. https://doi.org/10.1016/j.eswa.2019.01.068
  57. Tejani, G. G., Savsani, V. J., Bureerat, S., and Patel, V. K. (2018b), "Topology and Size Optimization of Trusses with Static and Dynamic Bounds by Modified Symbiotic Organisms Search", J. Comput. Civ. Eng, 32(2), 4017085. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000741
  58. Tejani, G. G., Savsani, V. J., Patel, V. K., and Bureerat, S. (2017), "Topology, shape, and size optimization of truss structures using modified teaching-learning based optimization", J. Comput. Civ. Eng, 2(4), 313-331.
  59. Tejani, G. G., Savsani, V. J., Patel, V. K., and Mirjalili, S. (2018c), "Truss optimization with natural frequency bounds using improved symbiotic organisms search", Knowledge-Based Syst, 143, 162-178. https://doi.org/10.1016/j.knosys.2017.12.012
  60. Tejani, G. G., Savsani, V. J., Patel, V. K., and Savsani, P. V. (2018d), "Size, shape, and topology optimization of planar and space trusses using mutation-based improved metaheuristics", J. Comput. Des. Eng, 5(2), 198-214. https://doi.org/10.1016/j.jcde.2017.10.001
  61. Toklu, Y. C., Bekdas, G., and Temur, R. (2013), "Analysis of trusses by total potential optimization method coupled with harmony search", Struct. Eng. Mech, 45(2), 183-199. https://doi.org/10.12989/sem.2013.45.2.183
  62. Vanderplaats, G. N., Thomas, H. L., and Shyy, Y. K. (1991), "A review of approximation concepts for structural synthesis", Comput. Syst. Eng 2(1), 17-25. https://doi.org/10.1016/0956-0521(91)90036-5
  63. Wang, D., Zhang, W. H., and Jiang, J. S. (2002a), "Truss shape optimization with multiple displacement constraints", Comput. Methods Appl. Mech. Eng, 191(33), 3597-3612. https://doi.org/10.1016/S0045-7825(02)00297-9
  64. Wang, D., Zhang, W. H., and Jiang, J. S. (2002b), "Combined shape and sizing optimization of truss structures", Comput. Mech, 29(4-5), 307-312. https://doi.org/10.1007/s00466-002-0343-x
  65. Wang, L., and Grandhi, R. V. (1995), "Improved two-point function approximations for design optimization", AIAA J, 33(9), 1720-1727. https://doi.org/10.2514/3.12715
  66. Wu, S. J., and Chow, P. T. (1995), "Integrated discrete and configuration optimization of trusses using genetic algorithms", Comput. Struct, 55(4), 695-702. https://doi.org/10.1016/0045-7949(94)00426-4
  67. Xie, Y. M., and Steven, G. P. (1997), "Basic evolutionary structural optimization", Evol. Struct. Optim, 12-29.
  68. Yang, J. P. (1996), "Development of genetic algorithm-based approach for structural optimization", Ph.D. Dissertation, Singapore: Nanyang Technology University.