References
- Ahrari, A., and Atai, A. A. (2013), "Fully stressed design evolution strategy for shape and size optimization of truss structures", Comput. Struct, 123, 58-67. https://doi.org/10.1016/j.compstruc.2013.04.013
- Ahrari, A., Atai, A. A., and Deb, K. (2015), "Simultaneous topology, shape and size optimization of truss structures by fully stressed design based on evolution strategy", Eng. Optim, 47(8), 1063-1084. https://doi.org/10.1080/0305215X.2014.947972
- Arora, J. S. (1989), Introduction to Optimum Design, McGraw-Hill, New York, USA.
- Belegundu, A. D., and Arora, J. S. (1985), "A study of mathematical programmingmethods for structural optimization. Part II: Numerical results", Int. J. Numer. Methods Eng, 21(9), 1601-1623. https://doi.org/10.1002/nme.1620210905
- Cao, H., Qian, X., Chen, Z., and Zhu, H. (2017), "Enhanced particle swarm optimization for size and shape optimization of truss structures", Eng. Optim, 49(11), 1939-1956. https://doi.org/10.1080/0305215X.2016.1273912
- Cazacu, R., and Grama, L. (2014), "Steel truss optimization using genetic algorithms and FEA", Proceedings of the 7th International Conference Interdisciplinarity in Engineering (INTER-ENG 2013), 339-346.
- Chu, D. N. (1997), "Evolutionary structural optimization method for systems with stiffness and displacement constraints", Ph.D. Dissertation, Department of Civil and Building Engineering, Victoria University of Technology, Melbourne, Australia.
- Darvishi, P., and Shojaee, S. (2018), "Size and geometry optimization of truss structures using the combination of DNA computing algorithm and generalized convex approximation method", Int. J. Optim. Civ. Eng, 8(4), 625-656.
- Dede, T., and Ayvaz, Y. (2015), "Combined size and shape optimization of structures with a new meta-heuristic algorithm", Appl. Soft Comput. J, 28, 250-258. https://doi.org/10.1016/j.asoc.2014.12.007
- Degertekin, S. O., Lamberti, L., and Ugur, I. B. (2019), "Discrete sizing/layout/topology optimization of truss structures with an advanced Jaya algorithm", Appl. Soft Comput. J, 79, 363-390. https://doi.org/10.1016/j.asoc.2019.03.058
- Felix, J. E. (1981), "Shape optimization of trusses subject to strength, displacement, and frequency constraints", Master's Thesis, Naval Postgraduate School.
- Fleury, C. (1979), "A unified approach to structural weight minimization", Comput. Methods Appl. Mech. Eng, 20(1), 17-38. https://doi.org/10.1016/0045-7825(79)90056-2
- Fleury, C. (1989), "CONLIN: An efficient dual optimizer based on convex approximation concepts", Struct. Optim, 1(2), 81-89. https://doi.org/10.1007/BF01637664
- Fleury, C., and Braibant, V. (1986), "Structural optimization: A new dual method using mixed variables", Int. J. Numer. Methods Eng, 23(3), 409-428. https://doi.org/10.1002/nme.1620230307
- Ghoddosian, A., and Sheikhi Azqandi, M. (2011), "Using particle swarm optimization for minimization of moment peak in structure", Aust. J. Basic Appl. Sci, 5(8), 1428-1434.
- Gholizadeh, S., Barzegar, A., and Gheyratmand, C. (2011), "Shape optimization of structures by modified harmony search", Int. J. Optim. Civ. Eng, 3, 485-494.
- Goncalves, M. S., Lopez, R. H., and Miguel, L. F. F. (2015), "Search group algorithm: a new metaheuristic method for the optimization of truss structures", Comput. Struct, 153, 165-184. https://doi.org/10.1016/j.compstruc.2015.03.003
- Grygierek, K. (2016), "Optimization of trusses with self-adaptive approach in genetic algorithms", Archit. Civ. Eng. Environ. J, 9(4), 67-78.
- Habibi, A. R. (2012), "New approximation method for structural optimization", J. Comput. Civ. Eng, 26(2), 236-247. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000133
- Hansen, S. R., and Vanderplaats, G. N. (1990). "Approximation method for configuration optimization of trusses." AIAA J, 28(1), 161-168. https://doi.org/10.2514/3.10367
- Hosseini, S. S., Hamidi, S. A., Mansuri, M., and Ghoddosian, A. (2015), "Multi objective particle swarm optimization (MOPSO) for size and shape optimization of 2D truss structures", Period. Polytech. Civ. Eng, 59(1), 9-14. https://doi.org/10.3311/PPci.7341
- Hwang, S. F., and He, R. S. (2006), "A hybrid real-parameter genetic algorithm for function optimization", Adv. Eng. Informatics, 20(1), 7-21. https://doi.org/10.1016/j.aei.2005.09.001
- Imai, K., and Schmit, L. A. (1981), "Configuration optimization of trusses", J. Struct. Div. ASCE, 107, 745-756. https://doi.org/10.1061/JSDEAG.0005702
- Kalatjari, V. R., and Talebpour, M. H. (2018), "Optimization of skeletal structures using improved genetic algorithm based on proposed sampling search space idea", Int. J. Optim. Civ. Eng, 8(3), 415-432.
- Kaveh, A., and Ahmadi, B. (2014), "Sizing, geometry and topology optimization of trusses using force method and supervised charged system search", Struct. Eng. Mech, 50(3), 365-382. https://doi.org/10.12989/sem.2014.50.3.365
- Kaveh, A., and Mahdavi, V. (2015), "Colliding bodies optimization for size and topology optimization of truss structures", Struct. Eng. Mech, 53(5), 847-865. https://doi.org/10.12989/sem.2015.53.5.847
- Kaveh, A., and Talatahari, S. (2011), "An enhanced charged system search for configuration optimization using the concept of fields of forces", Struct. Multidiscip. Optim, 43(3), 339-351. https://doi.org/10.1007/s00158-010-0571-1
- Kaveh, A., and Zolghadr, A. (2014), "A new PSRO algorithm for frequency constraint truss shape and size optimization Hybrid View project A new PSRO algorithm for frequency constraint truss shape and size optimization", Struct. Eng. Mech, 52(3), 445-468. https://doi.org/10.12989/sem.2014.52.3.445
- Kumar, S., Tejani, G. G., and Mirjalili, S. (2019), "Modified symbiotic organisms search for structural optimization", Eng. Comput, 35(4), 1269-1296. https://doi.org/10.1007/s00366-018-0662-y
- Kumar, S., Tejani, G. G., Pholdee, N., and Bureerat, S. (2020), "Multi-objective modified heat transfer search for truss optimization", Eng. Comput.
- Kuritz, S. P., and Fleury, C. (1989), "Mixed variable structural optimization using convex linearization techniques", Eng. Optim, 15(1), 27-41. https://doi.org/10.1080/03052158908941140
- Lamberti, L. (2008), "An efficient simulated annealing algorithm for design optimization of truss structures", Comput. Struct, 86(19-20), 1936-1953. https://doi.org/10.1016/j.compstruc.2008.02.004
- Lamberti, L., and Pappalettere, C. (2003), "Move limits definition in structural optimization with sequential linear programming. Part II: Numerical examples", Comput. Struct, 81(4), 214-238.
- Lamberti, L., and Pappalettere, C. (2004). "Improved sequential linear programming formulation for structural weight minimization." Comput. Methods Appl. Mech. Eng, 193(33-35), 3493-3521. https://doi.org/10.1016/j.cma.2003.12.040
- Lee, K. S., and Geem, Z. W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct, 82(9-10), 781-798. https://doi.org/10.1016/j.compstruc.2004.01.002
- Lee, K. S., and Geem, Z. W. (2005), "A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice", Comput. Methods Appl. Mech. Eng, 194(36-38), 3902-3933. https://doi.org/10.1016/j.cma.2004.09.007
- Lee, K. S., Han, S. W., and Geem, Z. W. (2011), "Discrete size and discrete-continuous configuration optimization methods for truss structures using the harmony search algorithm", Int. J. Optim. Civ. Eng, 1(1), 107-126.
- Miguel, L. F. F., Lopez, R. H., and Miguel, L. F. F. (2013), "Multimodal size, shape, and topology optimisation of truss structures using the Firefly algorithm", Adv Eng Softw, 56, 23-37. https://doi.org/10.1016/j.advengsoft.2012.11.006
- Mortazavi, A., and Togan, V. (2016), "Simultaneous size, shape, and topology optimization of truss structures using integrated particle swarm optimizer", Struct. Multidiscip. Optim, 54(4), 715-736. https://doi.org/10.1007/s00158-016-1449-7
- Mortazavi, A., Togan, V., and Nuhoglu, A. (2017a), "An integrated particle swarm optimizer for optimization of truss structures with discrete variables", Struct. Eng. Mech, 61(3), 359-370. https://doi.org/10.12989/sem.2017.61.3.359
- Mortazavi, A., Togan, V., and Nuhoglu, A. (2017b), "Weight minimization of truss structures with sizing and layout variables using integrated particle swarm optimizer", J. Civ. Eng. Manag, 23(8), 985-1001. https://doi.org/10.3846/13923730.2017.1348982
- Muller, T. E., and Klashorst, E. (2017), "A quantitative comparison between size, shape, topology and simultaneous optimization for truss structures", Lat. Am. J. Solids Struct, 14(12), 2221-2242. https://doi.org/10.1590/1679-78253900
- Najian Asl, R., Aslani, M., and Shariat Panahi, M. (2013), Sizing Optimization of Truss Structures Using A Hybridized Genetic Algorithm. NASA ADS.
- Nguyena, X. H., and Lee, J. (2015), "Sizing, shape and topology optimization of trusses with energy approach", Struct. Eng. Mech, 56(1), 107-121. https://doi.org/10.12989/sem.2015.56.1.107
- Noii, N., Aghayan, I., Hahjirasouliha, I., and Kunt, M. M. (2016), "A new hybrid method for size and topology optimization of truss structures using modified ALGA and QPGA", J. Civ. Eng. Manag, 23(2), 252-262. https://doi.org/10.3846/13923730.2015.1075420
- Rahami, H., Kaveh, A., and Gholipour, Y. (2008), "Sizing, geometry and topology optimization of trusses via force method and genetic algorithm", Eng. Struct, 30(9), 2360-2369. https://doi.org/10.1016/j.engstruct.2008.01.012
- Rajeev, S., and Krishnamoorthy, C. S. (1997), "Genetic algorithms-based methodologies for design optimization of trusses", J. Struct. Eng, 123(3), 350-358. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:3(350)
- Schmit, L. A., and Farshi, B. (1974), "Some approximation concepts for structural synthesis", AIAA J, 12(5), 692-699. https://doi.org/10.2514/3.49321
- Serpik, I. N., Alekseytsev, A. V., and Balabin, P. Y. (2017), "Mixed approaches to handle limitations and execute mutation in the genetic algorithm for truss size, shape and topology optimization", Period. Polytech. Civ. Eng, 61(3), 471-482.
- Shojaee, S., Arjomand, M., and Khatibinia, M. (2013), "A hybrid algorithm for sizing and layout optimization of truss structures combining discrete PSO and convex approximation", Int. J. Optim. Civ. Eng, 3(1), 57-83.
- Sonmez, M. (2011), "Artificial Bee Colony algorithm for optimization of truss structures", Appl. Soft Comput, 11(2), 2406-2418. https://doi.org/10.1016/j.asoc.2010.09.003
- Svanberg, K. (1987), "The method of moving asymptotes-a new method for structural optimization", Int. J. Numer. Methods Eng, 24(2), 359-373. https://doi.org/10.1002/nme.1620240207
- Tang, W., Tong, L., and Gu, Y. (2005), "Improved genetic algorithm for design optimization of truss structures with sizing, shape and topology variables", Int. J. Numer. Methods Eng, 62(13), 1737-1762. https://doi.org/10.1002/nme.1244
- Techasen, T., Wansasueb, K., Panagant, N., Pholdee, N., and Bureerat, S. (2018), "Multiobjective simultaneous topology, shape and sizing optimization of trusses using evolutionary optimizers", Proceedings of the IOP Conference Series: Materials Science and Engineering, 20-29.
- Tejani, G. G., Pholdee, N., Bureerat, S., and Prayogo, D. (2018a), "Multiobjective adaptive symbiotic organisms search for truss optimization problems", Knowledge-Based Syst, 161, 398-414. https://doi.org/10.1016/j.knosys.2018.08.005
- Tejani, G. G., Pholdee, N., Bureerat, S., Prayogo, D., and Gandomi, A. H. (2019), "Structural optimization using multi-objective modified adaptive symbiotic organisms search", Expert Syst. Appl, 125, 425-441. https://doi.org/10.1016/j.eswa.2019.01.068
- Tejani, G. G., Savsani, V. J., Bureerat, S., and Patel, V. K. (2018b), "Topology and Size Optimization of Trusses with Static and Dynamic Bounds by Modified Symbiotic Organisms Search", J. Comput. Civ. Eng, 32(2), 4017085. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000741
- Tejani, G. G., Savsani, V. J., Patel, V. K., and Bureerat, S. (2017), "Topology, shape, and size optimization of truss structures using modified teaching-learning based optimization", J. Comput. Civ. Eng, 2(4), 313-331.
- Tejani, G. G., Savsani, V. J., Patel, V. K., and Mirjalili, S. (2018c), "Truss optimization with natural frequency bounds using improved symbiotic organisms search", Knowledge-Based Syst, 143, 162-178. https://doi.org/10.1016/j.knosys.2017.12.012
- Tejani, G. G., Savsani, V. J., Patel, V. K., and Savsani, P. V. (2018d), "Size, shape, and topology optimization of planar and space trusses using mutation-based improved metaheuristics", J. Comput. Des. Eng, 5(2), 198-214. https://doi.org/10.1016/j.jcde.2017.10.001
- Toklu, Y. C., Bekdas, G., and Temur, R. (2013), "Analysis of trusses by total potential optimization method coupled with harmony search", Struct. Eng. Mech, 45(2), 183-199. https://doi.org/10.12989/sem.2013.45.2.183
- Vanderplaats, G. N., Thomas, H. L., and Shyy, Y. K. (1991), "A review of approximation concepts for structural synthesis", Comput. Syst. Eng 2(1), 17-25. https://doi.org/10.1016/0956-0521(91)90036-5
- Wang, D., Zhang, W. H., and Jiang, J. S. (2002a), "Truss shape optimization with multiple displacement constraints", Comput. Methods Appl. Mech. Eng, 191(33), 3597-3612. https://doi.org/10.1016/S0045-7825(02)00297-9
- Wang, D., Zhang, W. H., and Jiang, J. S. (2002b), "Combined shape and sizing optimization of truss structures", Comput. Mech, 29(4-5), 307-312. https://doi.org/10.1007/s00466-002-0343-x
- Wang, L., and Grandhi, R. V. (1995), "Improved two-point function approximations for design optimization", AIAA J, 33(9), 1720-1727. https://doi.org/10.2514/3.12715
- Wu, S. J., and Chow, P. T. (1995), "Integrated discrete and configuration optimization of trusses using genetic algorithms", Comput. Struct, 55(4), 695-702. https://doi.org/10.1016/0045-7949(94)00426-4
- Xie, Y. M., and Steven, G. P. (1997), "Basic evolutionary structural optimization", Evol. Struct. Optim, 12-29.
- Yang, J. P. (1996), "Development of genetic algorithm-based approach for structural optimization", Ph.D. Dissertation, Singapore: Nanyang Technology University.