DOI QR코드

DOI QR Code

Optimization of fuzzy controller for nonlinear buildings with improved charged system search

  • 투고 : 2018.08.31
  • 심사 : 2020.08.18
  • 발행 : 2020.12.25

초록

In recent years, there is an increasing interest to optimize the fuzzy logic controller with different methods. This paper focuses on the optimization of a fuzzy logic controller applied to a seismically excited nonlinear building. In most cases, this problem is formulated based on the linear behavior of the structure, however in this paper, four sets of objective functions are considered with respect to the nonlinear responses of the structure as the peak interstory drift ratio, the peak level acceleration, the ductility factor and the maximum control force. The Improved Charged System Search is used to optimize the membership functions and the rule base of the fuzzy controller. The obtained results of the optimized and the non-optimized fuzzy controllers are compared to the uncontrolled responses of the structure. Also, the performance of the utilized method is compared with various classical and advanced optimization algorithms.

키워드

참고문헌

  1. Aalami, M.T., Talatahari, S. and Parsiavash, R., (2016), "Foundation rock interaction effect on optimal design of arch dams using QHCSS method", Iranian J. Struct. Eng., 2(1),
  2. Abhishek, K., Datta, S., Masanta, M. and Mahapatra, S.S., (2017), "Fuzzy embedded imperialist competitive algorithm (ICA) for multi-response optimization during machining of CFRP (Epoxy) composites", Adv. Mech., Industrial, Automation and Management Syst. (AMIAMS), 2017 International Conference on (100-103), IEEE.
  3. Abubaker, S., Nagan, S. and Nasar, T. (2016), "Particle swarm optimized fuzzy control of structure with tuned liquid column damper", Global J. Pure Appl. Math., 12(1), 875-886.
  4. Aldawod, M., Naghdy, F., Samali, B. and Kwok, K.C.S. (1999), "Active control of wind excited structures using fuzzy logic", Fuzzy Systems Conference Proceedings, 1999. FUZZ-IEEE'99. 1999 IEEE International (Vol. 1, pp. 72-77), IEEE.
  5. Al-Dawod, M., Samali, B., Kwok, K. and Naghdy, F. (2004), "Fuzzy controller for seismically excited nonlinear buildings", J. Eng. Mech., 130(4), 407-415. https://doi.org/10.1061/(asce)0733-9399(2004)130:4(407)
  6. Aliabadi, S.F. and Taher, S.A. (2017), "Design of Fuzzy FOPID Controller Optimized by ICA for Control of AVR", Majlesi J. Electrical Eng., 11(4), 27-35.
  7. Atashpaz-Gargari, E. and Lucas, C. (2007), "Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition", Evolutionary Computation, CEC 2007. IEEE Congress on (4661-4667), IEEE.
  8. Azizi, M., Ejlali, R.G., Ghasemi, S.A.M. and Talatahari, S. (2019a), "Upgraded Whale Optimization Algorithm for fuzzy logic based vibration control of nonlinear steel structure", Eng. Struct., 192, 53-70. https://doi.org/10.1016/j.engstruct.2019.05.007.
  9. Azizi, M., Ghasemi, S.A.M., Ejlali, R.G. and Talatahari, S. (2020), "Optimum design of fuzzy controller using hybrid ant lion optimizer and Jaya algorithm", Artificial Intelligence Rev., 53(3), 1553-1584. https://doi.org/10.1007/s10462-019-09713-8.
  10. Azizi, M., Ghasemi, S.A.M., Ejlali, R.G. and Talatahari, S. (2019b), "Optimal tuning of fuzzy parameters for structural motion control using multiverse optimizer", The Struct. Design of Tall Special Buildings, 28(13), e1652. https://doi.org/10.1002/tal.1652.
  11. Azizipanah-Abarghooee, R., Malekpour, M., Zare, M. and Terzija, V. (2016), "A new inertia emulator and fuzzy-based LFC to support inertial and governor responses using Jaya algorithm", Power and Energy Society General Meeting (PESGM), 2016 (1-5), IEEE.
  12. Battaini, M., Casciati, F. and Faravelli, L. (1998), "Fuzzy control of structural vibration. An active mass system driven by a fuzzy controller", Earthq. Eng. Struct. Dynam., 27(11), 1267-1276. https://doi.org/10.1002/(SICI)1096-9845(1998110)27:11<1267::AID-EQE782>3.0.CO;2-D
  13. Bellman, R.E. and Zadeh, L.A. (1970), "Decision-making in a fuzzy environment", Management Sci., 17(4), B-141.
  14. Bhateshvar, Y.K., Mathur, H.D., Siguerdidjane, H. and Bansal, R.C. (2017), "Ant Colony Optimized Fuzzy Control Solution for Frequency Oscillation Suppression", Electric Power Components Syst., 45(14), 1573-1584. https://doi.org/10.1080/15325008.2017.1362073
  15. Bingul, Z. and Karahan, O. (2011), "A Fuzzy Logic Controller tuned with PSO for 2 DOF robot trajectory control", Expert Syst. Appl., 38(1), 1017-1031. https://doi.org/10.1016/j.eswa.2010.07.131
  16. Caraveo, C., Valdez, F. and Castillo, O. (2016), "Optimization of fuzzy controller design using a new bee colony algorithm with fuzzy dynamic parameter adaptation", Appl. Soft Comput., 43, 131-142. https://doi.org/10.1016/j.asoc.2016.02.033
  17. Eberhart, R. and Kennedy, J. (1995), "A new optimizer using particle swarm theory", Micro Machine and Human Science, 1995. MHS'95., Proceedings of the Sixth International Symposium on (39-43), IEEE.
  18. Edrees, T. (2015), "Structural Control and Identification of Civil Engineering Structures", Ph.D. Dissertation, Lulea tekniska universitet, Lulea, Sweden.
  19. Faravelli, L. and Yao, T. (1996), "Use of adaptive networks in fuzzy control of civil structures", Computer‐Aided Civil Infrastruct. Eng., 11(1), 67-76. https://doi.org/10.1111/j.1467-8667.1996.tb00310.x
  20. Hari, M.J.V. and Patil, M.A., (2017), "Optimization of FUZZY controller by JAYA algorithm", International Research Journal of Engineering and Technology (IRJET), 4(7), 2182-2186.
  21. Hashim, H.A., El-Ferik, S., Ayinde, B.O. and Abido, M.A., (2017), "Optimal Tuning of Fuzzy Feedback filter for L1 Adaptive Controller Using Multi-Objective Particle Swarm Optimization for Uncertain Nonlinear MIMO Systems", arXiv preprint arXiv:1710.05423.
  22. Holland, J.H., (1992), "Genetic algorithms", Scientific American, 267(1), 66-73. https://doi.org/10.1038/scientificamerican0792-66
  23. Holmblad, L.P. and Ostergaard, J.J. (1993), "Control of a cement kiln by fuzzy logic", Readings Fuzzy Sets Intelligent Syst., 337-347. https://doi.org/10.1016/B978-1-4832-1450-4.50039-0.
  24. Kaveh, A. and Ghazaan, M.I. (2018), Meta-heuristic Algorithms for Optimal Design of Real-Size Structures, Springer International Publishing, Germany.
  25. Kaveh, A. and Maniat, M., (2015), "Damage detection based on MCSS and PSO using modal data", Smart Struct. Syst., 15(5), 1253-1270. http://dx.doi.org/10.12989/sss.2015.15.5.1253.
  26. Kaveh, A. and Nikaeen, M., (2013), "Optimum design of irregular grillage systems using CSS and ECSS algorithms with different boundary conditions", J. Civil Eng., IUST, 11, 143-153.
  27. Kaveh, A. and Talatahari, S. (2010), "A novel heuristic optimization method: Charged system search", Acta Mechanica, 213(3-4), 267-289. https://doi.org/10.1007/s00707-009-0270-4
  28. Kaveh, A. and Talatahari, S. (2012), "Charged system search for optimal design of frame structures", Appl. Soft Comput., 12(1), 382-393. https://doi.org/10.1016/j.asoc.2011.08.034
  29. Kaveh, A. (2014), Advances in Metaheuristic Algorithms for Optimal Design of Structures, Springer, Switzerland.
  30. Kaveh, A. (2017), Applications of Metaheuristic Optimization Algorithms in Civil Engineering, Springer, Switzerland.
  31. Kaveh, A., Mirzaei, B. and Jafarvand, A. (2015), "An improved magnetic charged system search for optimization of truss structures with continuous and discrete variables", Appl. Soft Comput., 28, 400-410. https://doi.org/10.1016/j.asoc.2014.11.056
  32. Kaveh, A., Pirgholizadeh, S. and Khadem, H.O. (2015), "Semi-active tuned mass damper performance with optimized fuzzy controller using CSS algorithm", Asian J. Civil Eng., 16(5), 587-606.
  33. Kaveh, A., Talatahari, S. and Azar, B.F. (2012), "Optimum design of composite open channels using charged system search algorithm. Iranian Journal of Science and Technology", Transactions Civil Eng., 36(C1), 67.
  34. Kiani, M. and Yildiz, A.R., (2016), "A comparative study of non-traditional methods for vehicle crashworthiness and NVH optimization", Archives Comput. Methods Eng., 23(4), 723-734. https://doi.org/10.1007/s11831-015-9155-y.
  35. Mamdani, E.H. and Assilian, S. (1975), "An experiment in linguistic synthesis with a fuzzy logic controller", J. ManMachine Studies, 7(1), 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2.
  36. Marinaki, M., Marinakis, Y. and Stavroulakis, G.E. (2011), "Fuzzy control optimized by a multi-objective particle swarm optimization algorithm for vibration suppression of smart structures", Struct. Multidisciplinary Optimization, 43(1), 29-42. https://doi.org/10.1007/s00158-010-0552-4
  37. Marinaki, M., Marinakis, Y. and Stavroulakis, G.E., (2015), "Fuzzy control optimized by a multi-objective differential evolution algorithm for vibration suppression of smart structures", Comput. Struct., 147, 126-137. https://doi.org/10.1016/j.compstruc.2014.09.018.
  38. Mirjalili, S. (2016), "Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems", Neural Comput. Appl., 27(4), 1053-1073. https://doi.org/10.1007/s00521-015-1920-1
  39. Mirjalili, S., Mirjalili, S.M. and Lewis, A., (2014), "Grey wolf optimizer", Adv. Eng. software, 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
  40. Nouhi, B., Talatahari, S., Kheiri, H. and Cattani, C. (2013), "Chaotic charged system search with a feasible-based method for constraint optimization problems", Math. Problems Eng., 2013. https://doi.org/10.1155/2013/391765.
  41. Ohtori, Y., Christenson, R.E., Spencer Jr, B.F. and Dyke, S.J., (2004), "Benchmark control problems for seismically excited nonlinear buildings", J. Eng. Mech., 130(4), 366-385. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(366).
  42. Precup, R.E., David, R.C. and Petriu, E.M. (2017a), "Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity", IEEE Transactions Industrial Electron., 64(1), 527-534. https://doi.org/10.1109/TIE.2016.2607698.
  43. Precup, R.E., David, R.C., Petriu, E.M., Preitl, S. and Radac, M.B. (2012), "Charged system search algorithms for optimal tuning of PI controllers", IFAC Proceedings Volumes, 45(4), 115-120. https://doi.org/10.3182/20120403-3-DE-3010.00043
  44. Precup, R.E., David, R.C., Petriu, E.M., Preitl, S. and Radac, M.B., (2014), "Novel adaptive charged system search algorithm for optimal tuning of fuzzy controllers", Expert Syst. Appl., 41(4), 1168-1175. https://doi.org/10.1016/j.eswa.2013.07.110.
  45. Precup, R.E., David, R.C., Szedlak-Stinean, A.I., Petriu, E.M. and Dragan, F. (2017b), "An easily understandable grey wolf optimizer and its application to fuzzy controller tuning", Algorithms, 10(2), 68. https://doi.org/10.3390/a10020068.
  46. Qian, D., Tong, S. and Lee, S. (2016), "Fuzzy-logic-based control of payloads subjected to double-pendulum motion in overhead cranes", Automation Construct., 65, 133-143. https://doi.org/10.1016/j.autcon.2015.12.014.
  47. Rao, R., (2016), "Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems", J. Industrial Eng. Comput., 7(1), 19-34.
  48. Sharbatdar, M.K., Talatahari, S. and Mousavi, M.R. (2016), "The optimization of the time-cost tradeoff problem in projects with conditional activities using of the multi-objective charged system search algorithm (SMOCSS)", J. History Culture Art Res., 5(3), 178-194. https://doi.org/10.7596/taksad.v5i3.571
  49. Socha, K. and Dorigo, M. (2008), "Ant colony optimization for continuous domains", European J. Operational Res., 185(3), 1155-1173. https://doi.org/10.1016/j.ejor.2006.06.046
  50. Soong, T.T. and Spencer Jr Reviewer, B.F. (1992), "Active structural control: Theory and practice", J. Eng. Mech., 118(6), 1282-1285. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:6(1282)
  51. Symans, M.D. and Kelly, S.W. (1999), "Fuzzy logic control of bridge structures using intelligent semi‐active seismic isolation systems", Earthq. Eng. Struct. Dynam., 28(1), 37-60. https://doi.org/10.1002/(SICI)1096-9845(199901)28:1<37::AID-EQE803>3.0.CO;2-Z
  52. Tairidis, G., Foutsitzi, G., Koutsianitis, P. and Stavroulakis, G.E. (2016), "Fine tuning of a fuzzy controller for vibration suppression of smart plates using genetic algorithms", Adv. Eng. Software, 101, pp.123-135. https://doi.org/10.1016/j.advengsoft.2016.01.019
  53. Talatahari, S. and Azizi, M. (2020a), "Chaos Game Optimization: A novel metaheuristic algorithm", Artificial Intelligence Rev., 1-88. https://doi.org/10.1007/s10462-020-09867-w
  54. Talatahari, S., & Azizi, M. (2020b), "Optimization of Constrained Mathematical and Engineering Design Problems Using Chaos Game Optimization", Comput. Industrial Eng., 106560. https://doi.org/10.1016/j.cie.2020.106560.
  55. Talatahari, S. and Azizi, M. (2020c), "Optimal design of real‐size building structures using quantum‐behaved developed swarm optimizer", Struct. Design Tall Special Build., e1747. https://doi.org/10.1002/tal.1747.
  56. Talatahari, S., Motamedi, P., Farahmand Azar, B., & Azizi, M. (2019), "Tribe-charged system search for parameter configuration of nonlinear systems with large search domains", Eng. Optimization, 1-14. https://doi.org/10.1080/0305215X.2019.1696786.
  57. Talatahari, S., Sheikholeslami, R., Shadfaran, M. and Pourbaba, M. (2012), "Optimum design of gravity retaining walls using charged system search algorithm", Math. Problems Eng., 2012.
  58. Talatahari, S., Veladi, H. and Nouhi, B. (2014), "Enhanced Charged System Search For Optimum Design Of Industrial Tunnel Sections", Int. J. Optim. Civil Eng, 4(3), 309-319.
  59. Tani, A., Kawamura, H. and Seiko, R. (1998), "Intelligent fuzzy optimal control of building structures", Eng. Struct., 20(3), 184-192. https://doi.org/10.1016/S0141-0296(97)00077-1
  60. Tiwari, D., Pachauri, N., Rani, A. and Singh, V. (2016), "Fractional order PID (FOPID) controller based temperature control of bioreactor", International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2968-2973, Chennai, March.
  61. Vanishree, J. and Ramesh, V., (2018), Optimization of Size and Cost of Static VAR Compensator using Dragonfly Algorithm for Voltage Profile Improvement in Power Transmission Systems. International Journal of Renewable Energy Research (IJRER), 8(1), pp.56-66.
  62. Wang, L.X., (1999), A course in fuzzy systems. Prentice-Hall press, USA.
  63. Yildiz, A.R., (2012), A comparative study of population-based optimization algorithms for turning operations. Information Sciences, 210, pp.81-88. https://doi.org/10.1016/j.ins.2012.03.005
  64. Yildiz, A.R., (2013), Comparison of evolutionary-based optimization algorithms for structural design optimization. Engineering applications of artificial intelligence, 26(1), pp.327-333. https://doi.org/10.1016/j.engappai.2012.05.014
  65. Yildiz, B.S. and Yildiz, A.R., (2018), Comparison of grey wolf, whale, water cycle, ant lion and sine-cosine algorithms for the optimization of a vehicle engine connecting rod. Materials Testing, 60(3), pp.311-315. https://doi.org/10.3139/120.111153
  66. Yildiz, B.S., (2017), A comparative investigation of eight recent population-based optimisation algorithms for mechanical and structural design problems. International Journal of Vehicle Design, 73(1-3), pp.208-218. https://doi.org/10.1504/IJVD.2017.082603
  67. Zadeh, L.A. (1968), Fuzzy algorithms. Information and Control, 12, pp. 94-102. https://doi.org/10.1016/S0019-9958(68)90211-8
  68. Zadeh, L.A., (1965), Fuzzy sets. Information and Control, 8(3), pp. 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  69. Zadeh, L.A., (1971), Similarity relations and fuzzy orderings. Information sciences, 3(2), pp.177-200. https://doi.org/10.1016/S0020-0255(71)80005-1
  70. Zadeh, L.A., (1973), Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on systems, Man, and Cybernetics, (1), pp.28-44.
  71. Zhang, X. and Wei, C., (2017), Design of adaptive fuzzy sliding mode control via improved ant colony optimization algorithm. In 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD) (pp. 1277-1283). IEEE.

피인용 문헌

  1. Remarks on Wiener Index of Bipolar Fuzzy Incidence Graphs vol.9, 2020, https://doi.org/10.3389/fphy.2021.677882