DOI QR코드

DOI QR Code

Experimental and analytical study on continuous GFRP-concrete decks with steel bars

  • Tong, Zhaojie (Shenzhen Municipal Design & Research Institute Co., Ltd.) ;
  • Chen, Yiyan (Shenzhen Municipal Design & Research Institute Co., Ltd.) ;
  • Huang, Qiao (Department of Bridge Engineering, School of Transportation, Southeast University) ;
  • Song, Xiaodong (Department of Bridge Engineering, School of Transportation, Southeast University) ;
  • Luo, Bingqing (School of Innovation and Entrepreneurship, Southern University of Science and Technology) ;
  • Xu, Xiang (Department of Bridge Engineering, School of Transportation, Southeast University)
  • 투고 : 2020.05.17
  • 심사 : 2020.08.13
  • 발행 : 2020.12.25

초록

A hybrid bridge deck is proposed, which includes steel bars, concrete and glass-fiber-reinforced-polymer (GFRP) plates with channel sections. The steel bar in the negative moment region can increase the flexural stiffness, improve the ductility, and reduce the GFRP ratio. Three continuous decks with different steel bar ratios and a simply supported deck were fabricated and tested to study the mechanical performance. The failure mode, deflection, strain distribution, cracks and support reaction were tested and discussed. The steel bar improves the mechanical performance of continuous decks, and a theoretical method is proposed to predict the deformation and the shear capacity. The experimental results show that all specimens failed with shear failure in the positive moment region. The increase of steel bar ratio in the negative moment region can achieve an enhancement in the flexural stiffness and reduce the deflection without increasing GFRP. Moreover, the continuous deck can achieve a yield load, and the negative moment can be carried by GFRP plates after the steel bar yields. Finally, a nonlinear analytical method for the deflection calculation was proposed and verified, with considering the moment redistribution, non-cracked sections and nonlinearity of material. In addition, a simplified calculation method was proposed to predict the shear capacity of GFRP-concrete decks.

키워드

과제정보

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and publication of this article. The author(s) disclosed receipt of the following financial support for the research, authorship, and publication of this article: This article was supported by the finical support provided by Project funded by the National Natural Science Foundation of China (Project No. 51608116) and the China Postdoctoral Science Foundation (Project No. 2019M653085).

참고문헌

  1. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A. A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete., 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489
  2. Akgoz, B. and Civalek O. A (2015), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mech., 226, 2277-2294. http://doi.org/10.1007/s00707-015-1308-4
  3. Alagusundaramoorthy, P., Harik, I.E. and Choo, C.C. (2006), "Structural behavior of FRP composite bridge deck panels", J. Bridge Eng., 11(4), 384-393. http://doi.org/10.1061/(asce)1084-0702(2006)11:4(384)
  4. Banjara, N.K. and Ramanjaneyulu, K. (2019), "Effective CFRP retrofit strategy for flexural deficient RC beams", Struct. Eng. and Mech., 69(2), 163-175. http://doi.org/10.12989/sem.2019.69.2.163
  5. Belbachir, N., Bourada, M., Draiche, K., Tounsi, A., Bourada, F., Bousahla, A. A. and Mahmoud, S. R. (2020), "Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory", Smart Struct. Syst., 25(4), 409-422. https://doi.org/10.12989/sss.2020.25.4.409
  6. Belbachir, N., Draich, K., Bousahla, A. A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081
  7. Bourada, F., Bousahla, A. A., Tounsi, A., Bedia, E. A. A., Mahmoud, S. R., Benrahou, K. H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete., 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485
  8. Cheng, L. (2011), "Flexural fatigue analysis of a CFRP form reinforced concrete bridge deck", Compos. Struct., 93(11), 2895-2902. http://doi.org/10.1016/j.compstruct.2011.05.014
  9. Cho, J.R., Park, S.Y., Cho, K., Kim, S.T. and Kim, B.S. (2012), "Pull-out test and discrete spring model of fibre-reinforced polymer perfobond rib shear connector", Can. J. Civil. Eng., 39, 1311-1320. http://doi.org/10.1139/cjce-2011-0573
  10. Cho, K., Park, S.Y., Kim, S.T., Cho, J.R. and Kim, B.S. (2013), "Behavioral characteristics of precast FRP-concrete composite deck subjected to combined axial and flexural loads", Compos. Part B-Eng., 44(1), 679-685. http://doi.org/10.1016/j.compositesb.2012.01.079
  11. Civalek O. (2007), "Free vibration and buckling analyses of composite plates with straight-sided quadrilateral domain based on DSC approach", Finite Elem. Anal. Des., 43(13), 1013-1022. http://doi.org/10.1016/j.finel.2007.06.014
  12. Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352. http://doi.org/10.1016/j.amc.2016.05.034
  13. Demir, C. and Civalek, O. (2013), "Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models", Appl. Math. Model., 37, 9355-9367. http://doi.org/10.1016/j.apm.2013.04.050
  14. Dezi, L., Gara, F. and Leoni, G. (2006), "Construction sequence modelling of continuous steel-concrete composite bridge decks", Steel Compos. Struct., 6(2), 123-138. http://doi.org/10.12989/scs.2006.6.2.123
  15. Di, J., Cao, L. and Han, J. (2020), "Experimental study on the shear behaviour of GFRP-concrete composite beam connections", Mat., 13(5), 1067. http://doi.org/10.3390/ma13051067
  16. Dieter, D.A., Dietsche, J.S., Bank, L.C., Oliva, M. and Russell, J. (2002), "Concrete bridge decks constructed with fiberreinforced polymer stay-in-place forms and grid reinforcing", Transp. Res. Rec.: J. Transp. Res. Board, 1814, 219-226. https://doi.org/10.3141/1814-26
  17. Draiche, K., Bousahla, A. A., Tounsi, A., Alwabli, A. S., Tounsi, A. and Mahmoud, S. R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete., 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369
  18. Goyal, R., Mukherjee, A. and Goyal, S. (2016), "An investigation on bond between FRP stay-in-place formwork and concrete", Constr. Build. Mater., 113, 741-751. http://doi.org/10.1016/j.conbuildmat.2016.03.124
  19. Gurses, M., Akgoz, B. and Civalek, O. (2012), "Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation", Appl. Math. Comput., 219, 3226-3240. http://doi.org/10.1016/j.amc.2012.09.062
  20. He, J., Liu, Y.Q., Chen, A.R. and Dai, L. (2012), "Experimental investigation of movable hybrid GFRP and concrete bridge deck", Constr. Build. Mater., 26(1), 49-64. http://doi.org/10.1016/j.conbuildmat.2011.05.002
  21. JTG 3362-2018 (2018), Specificantions for design of highway reinforced concrete and prestressed concrete bridges and culverts, Mot; Beijing, China.
  22. Kong, S. Y., Yang, X. and Lee, Z.Y. (2018), "Mechanical performance and numerical simulation of GFRP-concrete composite panel with circular hollow connectors and epoxy adhesion", Constr. Build. Mater., 184, 643-654.http://doi.org/10.1016/j.conbuildmat.2018.07.008
  23. Moretti, M.L. (2019), "Effectiveness of different confining configurations of FRP jackets for concrete columns", Struct. Eng. and Mech., 72(2), 155-168. http://doi.org/10.12989/sem.2019.72.2.155
  24. Nelson, M. and Fam, A. (2013), "Structural GFRP permanent forms with T-shape ribs for bridge decks supported by precast concrete girders", J. Bridge Eng., 18(9), 813-826. http://doi.org/10.1061/(ASCE)BE.1943-5592.0000418
  25. Nelson, M. and Fam, A. (2014), "Modeling of flexural behavior and punching shear of concrete bridge decks with FRP stay-inplace forms using the theory of plates", J. Eng. Mech., 140(12), 04014095. http://doi.org/10.1061/(ASCE)EM.1943-7889.0000813
  26. Nicoletta, B., Woods, J., Gales, J. and Fam, A. (2019), "Postfire performance of GFRP stay-in-place formwork for concrete bridge decks", J. Compos. Constr., 23(3), 04019015. http://doi.org/10.1061/(ASCE)CC.1943-5614.0000941
  27. Noel, M. and Fam, A. (2016), "Design equations for concrete bridge decks with FRP stay-in-place structural forms", J. Compos. Constr., 20(5), 04016024. http://doi.org/10.1061/(ASCE)CC.1943-5614.0000681
  28. Rashid, K., Li, X., Xie, Y. and Deng, J. (2020), "Cracking behavior of geopolymer concrete beams reinforced with steel and fiber reinforced polymer bars under flexural load", Compos. Part B-Eng., 186, 107777. http://doi.org/10.1016/j.compositesb.2020.107777
  29. Razaqpur, A.G. (2006), "Proposed shear design method for FRPreinforced concrete members without stirrups", ACI Struct. J., 103(1), 93-102. http://doi.org/10.1109/VAST.2006.261436
  30. Sahla, M., Saidi, H., Draiche, K., Bousahla, A. A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663
  31. Samaaneh, M. A., Sharif, A. M., Baluch, M. H. and Azad, A. K. (2016), "Numerical investigation of continuous composite girders strengthened with CFRP", Steel Compos. Struct., 21(6), 1307-1325. http://doi.org/10.12989/scs.2016.21.6.1307
  32. Sharif, A. M., Samaaneh, M. A., Azad, A. K. and Mohammed, H. B. (2016), "Use of CFRP to Maintain Composite Action for Continuous Steel-Concrete Composite Girders", J. Compos. Constr., 20(4), 04015088.1-04015088.10. http://doi.org/10.1061/(ASCE)CC.1943-5614.0000645
  33. Tong, Z.J., Song, X.D. and Huang, Q (2018), "Deflection calculation method on GFRP-concrete-steel composite beam", Steel Compos. Struct., 26(5), 595-606. http://doi.org/10.12989/scs.2018.26.5.595
  34. Tong, Z.J., Song, X.D. and Huang, Q. (2019), "Experimental and theoretical study on the flexural performance of GFRPconcrete-steel composite beams", KSCE J. Civ. Eng., 23(8): 3397-3408. http://doi.org/10.1007/s12205-019-0152-9
  35. Unsal, I., Tokgoz, S., Cagatay, I. H. and Dundar, C. (2017), "A study on load-deflection behavior of two-span continuous concrete beams reinforced with GFRP and steel bars", Struct. Eng. and Mech., 63(5), 629-637. http://doi.org/10.12989/sem.2017.63.5.629
  36. Wang, W.W. and Dai, J.G. (2013), "Self-stressed steel fiber reinforced concrete as negative moment connection for strengthening of multi-span simply-supported girder bridges", Adv. Struct. Eng., 16(6), 1113-1127. http://doi.org/10.1260/1369-4332.16.6.1113
  37. Xin, H., Liu, Y., He, J., Fan, H. and Zhang, Y. (2015), "Fatigue behavior of hybrid GFRP-Concrete bridge decks under sagging moment", Steel Compos. Struct., 18(4), 925-946. http://doi.org/10.12989/scs.2015.18.4.925
  38. Yang, Y., Xue, Y., Zhang, T. and Tian, J. (2018), "Structural performance of GFRP-concrete composite beams", Struct. Eng. and Mech., 68(4), 485-495. http://doi.org/10.12989/sem.2018.68.4.485
  39. Yost, J.R., Gross, S.P. and Dinehart, D.W. (2003), "Effective moment of inertia for glass fiber-reinforced polymer-reinforced concrete beams", ACI Struct. J., 100(6), 732-739.
  40. Zuo, Y., Liu, Y. and He, J. (2018), "Experimental investigation on hybrid GFRP-concrete decks with T-shaped perforated ribs subjected to negative moment", Constr. Build. Mater., 158, 728-741. http://doi.org/10.1016/j.conbuildmat.2017.10.032
  41. Zuo, Y., Mosallam, A., Xin, H., Liu, Y. and He, J. (2018), "Flexural performance of a hybrid GFRP-concrete bridge deck with composite T-shaped perforated rib connectors", Compos. Struct., 194, 263-278. http://doi.org/10.1016/j.compstruct.2018.03.105