DOI QR코드

DOI QR Code

Experimental and numerical analysis of mixed mode I/III fracture of sandstone using three-point bending specimens

  • Li, Yifan (Department of Mechanical Engineering, University of Bristol, Queens Building, University Walk) ;
  • Dong, Shiming (College of Architecture and Environment, Sichuan University) ;
  • Pavier, Martyn J. (Department of Mechanical Engineering, University of Bristol, Queens Building, University Walk)
  • Received : 2020.05.08
  • Accepted : 2020.08.13
  • Published : 2020.12.25

Abstract

In this work the mixed mode I/III fracture of sandstone has been studied experimentally and numerically. The experimental work used three-point bending specimens containing pre-existing cracks, machined at various inclination angles so as to achieve varying proportions of mode I to mode III loading. Dimensionless stress intensity factors were calculated using the extended finite element method (XFEM) for and compared with existing results from literature calculated using conventional finite element method. A total of 28 samples were used to conduct the fracture test with 4 specimens for each of 7 different inclination angles. The fracture load and the geometry of the fracture surface were obtained for different mode mixities. Prediction of the fracture loads and the geometry of the fracture surface were made using XFEM coupled with a cohesive zone model (CZM) and showed a good comparison with the experimental results.

Keywords

References

  1. ABAQUS, C. (2017). Analysis user's manual. Version, 2017.
  2. Ahmadi-Moghadam, B., and Taheri, F. (2013), "An effective means for evaluating mixed-mode I/III stress intensity factors using single-edge notch beam specimen", J Strain Anal Eng, 48(4), 245-257. https://doi.org/10.1177/0309324713480767
  3. Aliha, M. R. M., and Ayatollahi, M. R. (2014), "Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading-A statistical approach", Theor. Appl. Fract. Mech., 69, 17-25. https://doi.org/10.1016/j.tafmec.2013.11.008
  4. Aliha, M. R. M., Ayatollahi, M. R., and Pakzad, R. (2008), "Brittle fracture analysis using a ring-shape specimen containing two angled cracks", Int. J. Fract., 153(1), 63-68. 10.1007/s10704-008-9280-9
  5. Aliha, M.R.M., Ayatollahi, M.R., Smith, D.J., and Pavier, M.J. (2010), "Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading", Eng. Fract. Mech., 77(11), 2200-2212. https://doi.org/10.1016/j.engfracmech.2010.03.009
  6. Aliha, M. R. M., Bahmani, A., and Akhondi, S. (2015a), "Numerical analysis of a new mixed mode I/III fracture test specimen", Eng. Fract. Mech., 134, 95-110. https://doi.org/10.1016/j.engfracmech.2014.12.010
  7. Aliha, M. R. M., Bahmani, A., and Akhondi, S. (2015b), "Determination of mode III fracture toughness for different materials using a new designed test configuration", Mater Design, 86, 863-871. https://doi.org/10.1016/j.matdes.2015.08.033
  8. Aliha, M. R. M., Bahmani, A., and Akhondi, S. (2016), "A novel test specimen for investigating the mixed mode I+ III fracture toughness of hot mix asphalt composites-Experimental and theoretical study", Int. J. Solids Struct., 90, 167-177. https://doi.org/10.1016/j.ijsolstr.2016.03.018
  9. Aliha, M. R. M., and Bahmani, A. (2017), "Rock fracture toughness study under mixed mode I/III loading", Rock Mech. Rock Eng., 50(7), 1739-1751. https://doi.org/10.1007/s00603-017-1201-7
  10. Aliha, M. R. M., Hosseinpour, G. R., and Ayatollahi, M. R. (2013), "Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials", Rock Mech. Rock Eng., 46(5), 1023-1034. 10.1007/s00603-012-0325-z
  11. Aliha, M. R. M., Mousavi, S. S., Bahmani, A., Linul, E., and Marsavina, L. (2019), "Crack initiation angles and propagation paths in polyurethane foams under mixed modes I/II and I/III loading", Theor. Appl. Fract. Mech., 101, 152-161. https://doi.org/10.1016/j.tafmec.2019.02.016
  12. Aliha, M. R. M., Razmi, A., and Mousavi, A. (2018), "Fracture study of concrete composites with synthetic fibers additive under modes I and III using ENDB specimen", Constr. Build. Mater., 190, 612-622. https://doi.org/10.1016/j.conbuildmat.2018.09.149
  13. Aliha, M. R. M., Sistaninia, M., Smith, D. J., Pavier, M. J., and Ayatollahi, M. R. (2012), "Geometry effects and statistical analysis of mode I fracture in guiting limestone", Int. J. Rock Mech. Min. Sci., 51, 128-135. https://doi.org/10.1016/j.ijrmms.2012.01.017
  14. Aminzadeh, A., Fahimifar, A., and Nejati, M. (2019), "On Brazilian disk test for mixed-mode I/II fracture toughness experiments of anisotropic rocks", Theor. Appl. Fract. Mech., 102, 222-238. https://doi.org/10.1016/j.tafmec.2019.04.010
  15. Anderson, T. L. (2017), Fracture mechanics: fundamentals and applications, CRC press, Boca Raton, Florida, USA.
  16. Avci, A., Akdemir, A., and Arikan, H. (2005), "Mixed-mode fracture behavior of glass fiber reinforced polymer concrete", Cem. Concr. Res., 35(2), 243-247. https://doi.org/10.1016/j.cemconres.2004.07.003
  17. Ayatollahi, M. R., and Aliha, M. R. M. (2007), "Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading", Comput. Mater. Sci, 38(4), 660-670. https://doi.org/10.1016/j.commatsci.2006.04.008
  18. Ayatollahi, M. R., and Aliha, M. R. M. (2008a), "On the use of Brazilian disc specimen for calculating mixed mode I-II fracture toughness of rock materials", Eng. Fract. Mech., 75(16), 4631-4641. https://doi.org/10.1016/j.engfracmech.2008.06.018
  19. Ayatollahi, M. R., and Aliha, M. R. M. (2008b)," Mixed mode fracture analysis of polycrystalline graphite-a modified MTS criterion", Carbon, 46(10), 1302-1308. https://doi.org/10.1016/j.carbon.2008.05.008
  20. Ayatollahi, M. R., and Aliha, M. R. M. (2009), "Mixed mode fracture in soda lime glass analyzed by using the generalized MTS criterion", Int. J. Solids Struct., 46(2), 311-321. https://doi.org/10.1016/j.ijsolstr.2008.08.035
  21. Ayatollahi, M. R., and Saboori, B. (2015a), "A new fixture for fracture tests under mixed mode I/III loading", Eur J Mech A-Solid, 51, 67-76. https://doi.org/10.1016/j.euromechsol.2014.09.012
  22. Ayatollahi, M. R., and Saboori, B. (2015b), "Maximum tangential strain energy density criterion for general mixed mode I/II/III brittle fracture", Int. J. Damage Mech., 24(2), 263-278. https://doi.org/10.1177/1056789514530745
  23. Bahmani, A., Aliha, M. R. M., and Berto, F. (2017), "Investigation of fracture toughness for a polycrystalline graphite under combined tensile-tear deformation", Theor. Appl. Fract. Mech., 90, 53-64. https://doi.org/10.1016/j.tafmec.2017.02.011
  24. Bahmani, A., Aliha, M. R. M., Sarbijan, M. J., and Mousavi, S. S. (2020), "An extended edge-notched disc bend (ENDB) specimen for mixed-mode I+II fracture assessments", Int. J. Solids Struct., 193-194, 239-250. https://doi.org/10.1016/j.ijsolstr.2020.02.017
  25. Bahrami, B., Ayatollahi, M. R., Mirzaei, A. M., and Yahya, M. Y. (2020), "Support Type Influence on Rock Fracture Toughness Measurement Using Semi-circular Bending Specimen", Rock Mech. Rock Eng., 53, 2175-2183. https://doi.org/10.1007/s00603-019-02023-z
  26. Buchholz, F. G., Chergui, A., and Richard, H. A. (2004), "Fracture analyses and experimental results of crack growth under general mixed mode loading conditions", Eng. Fract. Mech., 71(4-6), 455-468. https://doi.org/10.1016/S0013-7944(03)00015-8
  27. Chang, K.J. (1981), "On the maximum strain criterion-a new approach to the angled crack problem", Eng. Fract. Mech., 14(1), 107-124. https://doi.org/10.1016/0013-7944(81)90021-7
  28. Dehghany, M., Saeidi Googarchin, H., and Aliha, M. R. M. (2017), "The role of first non‐singular stress terms in mixed mode brittle fracture of V‐notched components: an experimental study", Fatigue Fract Eng M, 40(4), 623-641. https://doi.org/10.1111/ffe.12539
  29. Dong, S., Wang, Y., and Xia, Y. (2004), "Stress intensity factors for central cracked circular disk subjected to compression", Eng. Fract. Mech., 71(7-8), 1135-1148. https://doi.org/10.1016/S0013-7944(03)00120-6
  30. Erdogan, F., Sih, G.C. (1963), "On the crack extension in plates under plane loading and transverse shear", J. Basic Eng., 85(4), 519-525. http://dx.doi.org/10.1115/1.3656897
  31. Fowell, R. J., Hudson, J. A., Xu, C., and Zhao, X. (1995), "Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 32(1), 57-64. https://doi.org/10.1016/0148-9062(94)00015-u
  32. Guo, H., Aziz, N.I. and Schmidt, L.C. (1993), "Rock fracturetoughness determination by the Brazilian test", Eng. Geol., 33(3), 177-188. http://dx.doi.org/10.1016/0013-7952(93)90056-I
  33. Hua, W., Li, Y., Dong, S., Li, N., and Wang, Q. (2015), "T-stress for a centrally cracked Brazilian disk under confining pressure", Eng. Fract. Mech., 149, 37-44. https://doi.org/10.1016/j.engfracmech.2015.09.048
  34. Irwin, G. R. (1957), "Analysis of stresses and strains near the end of a crack traversing a plate", J Appl Mech-T ASME, E24: 351-369.
  35. Ke, C. C., Chen, C. S., and Tu, C. H. (2008), "Determination of fracture toughness of anisotropic rocks by boundary element method", Rock Mech. Rock Eng., 41(4), 509-538. https://doi.org/10.1007/s00603-005-0089-9
  36. Koo, J. M., and Choy, Y. S. (1991), "A new mixed mode fracture criterion: maximum tangential strain energy density criterion", Eng. Fract. Mech., 39(3), 443-449. https://doi.org/10.1016/0013-7944(91)90057-8
  37. Lancaster, I. M., Khalid, H. A., and Kougioumtzoglou, I. A. (2013), "Extended FEM modelling of crack propagation using the semicircular bending test", Constr. Build. Mater., 48, 270-277. https://doi.org/10.1016/j.conbuildmat.2013.06.046
  38. Li, Y., Dong, S., and Pavier, M. J. (2020), "Measurement of the mixed mode fracture strength of green sandstone using threepoint bending specimens", Geomech Eng, 20(1), 9-18. https://doi.org/10.12989/gae.2020.20.1.009
  39. Li, Y., Dong, S., Li, N., and Hua, W. (2017), "A strain-based criterion for general I/II/III mixed mode fracture", Applied Mathematics & Mechanics, 38(4), 447-456. Doi:10.21656/1000-0887.370212
  40. Li, Y., Dong, S., Pan, X., Li, N., and Yuan, Y. (2018), "Experimental study of mixed-mode I/III fracture of sandstone", Rock and Soil Mechanics, 39(11), 4063-4070. Doi:10.16285/j.rsm.2017.0351
  41. Liu, S., Chao, Y. J., and Zhu, X. (2004), "Tensile-shear transition in mixed mode I/III fracture", Int. J. Solids Struct., 41(22-23), 6147-6172. https://doi.org/10.1016/j.ijsolstr.2004.04.044
  42. Mahmoud, E., Saadeh, S., Hakimelahi, H., and Harvey, J. (2014), "Extended finite-element modelling of asphalt mixtures fracture properties using the semi-circular bending test", Road Mater. Pavement Des., 15(1), 153-166. https://doi.org/10.1080/14680629.2013.863737
  43. Mansourian, A., Hashemi, S., and Aliha, M. R. M. (2018), "Evaluation of pure and mixed modes (I/III) fracture toughness of Portland cement concrete mixtures containing reclaimed asphalt pavement", Constr. Build. Mater., 178, 10-18. https://doi.org/10.1016/j.conbuildmat.2018.05.130
  44. Mirsayar, M., Shi, X., and Zollinger, D. (2017), "Evaluation of interfacial bond strength between Portland cement concrete and asphalt concrete layers using bi-material SCB test specimen", Eng. Solid Mech., 5(4), 293-306. DOI: 10.5267/j.esm.2017.8.001
  45. Ouchterlony, F. (1988), "Suggested methods for determining the fracture toughness of rock", Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 25, 71-96.
  46. Ouchterlony, F. (1990), "Fracture toughness testing of rock with core based specimens", Eng. Fract. Mech., 35(1-3), 351-366. http://dx.doi.org/10.1016/0013-7944(90)90214-2
  47. Perras, M. A., and Diederichs, M. S. (2014), "A review of the tensile strength of rock: concepts and testing", Geotech. Geol. Eng., 32(2), 525-546. https://doi.org/10.1007/s10706-014-9732-0
  48. Pirmohammad, S., and Kiani, A. (2016), "Study on fracture behavior of HMA mixtures under mixed mode I/III loading", Eng. Fract. Mech., 153, 80-90. https://doi.org/10.1016/j.engfracmech.2015.12.027
  49. Pook, L. P. (1971), "The effect of crack angle on fracture toughness", Eng. Fract. Mech., 3(3), 205-218. https://doi.org/10.1016/0013-7944(71)90032-4
  50. Pook, L. P. (1985), "The fatigue crack direction and threshold behaviour of mild steel under mixed mode I and III loading", Int. J. Fatigue, 7(1), 21-30. https://doi.org/10.1016/0142- 1123(85)90004-0
  51. Qian, G., Gonzalez-Albuixech, V. F., Niffenegger, M., and Giner, E. (2016), "Comparison of KI calculation methods", Eng. Fract. Mech., 156, 52-67. https://doi.org/10.1016/j.engfracmech.2016.02.014
  52. Razavi, S. M. J., and Berto, F. (2019), "A new fixture for fracture tests under mixed mode I/II/III loading", Fatigue Fract Eng M, 42(9), 1874-1888. https://doi.org/10.1111/ffe.13033
  53. Reardon, A. C., and Quesnel, D. J. (1995), "Fracture surface interference effects in mode III", Mech. Mater., 19(2-3), 213-226. https://doi.org/10.1016/0167-6636(94)00039-J
  54. Safaei, S., Ayatollahi, M. R., and Saboori, B. (2017), "Fracture behavior of GPPS brittle polymer under mixed mode I/III loading", Theor. Appl. Fract. Mech., 91, 103-115. https://doi.org/10.1016/j.tafmec.2017.04.017
  55. Sarkar, S., Kumar, R., and Murthy, V. M. S. R. (2019), "Experimental and Numerical Simulation of Crack Propagation in Sandstone by Semi Circular Bend Test", Geotech. Geol. Eng., 37(4), 3157-3169. https://doi.org/10.1007/s10706-019-00833-0
  56. Shim, D. J., Uddin, M., Kalyanam, S., Brust, F., and Young, B. (2015), "Application of extended finite element method (XFEM) to stress intensity factor calculations", Proceedings of the ASME 2015 Pressure Vessels and Piping Conference, Boston, America, July. https://doi.org/10.1115/PVP2015-45032
  57. Singh, R.N. and Sun, G.X. (1989), Relationships Between Fracture Toughness, Hardness Indices and Mechanical Properties of Rocks, Mining Department Magazine, XLI, 49-62.
  58. Tada, H., Paris, P.C., and Irwin, G.R. (2000), The Stress Analysis of Cracks Handbook, 3ed, American Society of Mechanical Engineers, New York, USA.
  59. Tan, X., Konietzky, H., Frühwirt, T., and Dan, D. Q. (2015), "Brazilian tests on transversely isotropic rocks: laboratory testing and numerical simulations", Rock Mech. Rock Eng., 48(4), 1341-1351. https://doi.org/10.1007/s00603-014-0629-2
  60. Torabi, A. R., and Berto, F. (2014), "Mixed mode fracture assessment of U-notched graphite Brazilian disk specimens by means of the local energy", Struct Eng Mech, 50(6), 723-740. https://doi.org/10.12989/sem.2014.50.6.723
  61. Ulusay, R. (2014), The ISRM suggested methods for rock characterization, testing and monitoring: 2007-2014, Springer, New York, USA.
  62. Zhao, D., and Wang, Y. (1998), "Mode III fracture behavior of laminated composite with edge crack in torsion", Theor. Appl. Fract. Mech., 29(2), 109-123. https://doi.org/10.1016/S0167-8442(98)00023-8