과제정보
The author solemnly acknowledges the contribution of various authors in reproducing the experimental data in their paper, which formed the database for this study. The critical review and suggestions for improvement of the technical content and presentation of the manuscript received from the anonymous reviewers are duly appreciated.
참고문헌
- Adhikary, S.D., Chandra, L.R., Christian, A. and Ong, K.C.G. (2016), "Influence of cylindrical charge orientation on the blast response of high strength concrete panels", Eng. Struct., 149, 35-49. http://dx.doi.org/10.1016/j.engstruct.2016.04.035.
- Ahmad, S., Pilakoutas, K., Rafi, M.M. and Zaman, Q.U. (2018), "Bond strength prediction of steel bars in low strength concrete by using ANN", Comput. Concrete, 22(2), 249-259. http://dx.doi.org/10.12989/cac.2018.22.2.249.
- Aksoy, H. and Dahamsheh, A. (2018), "Markov chain-incorporated and synthetic data-supported conditional artificial neural network models for forecasting monthly precipitation in arid regions", J. Hydrol., 562, 758-779. https://doi.org/10.1016/j.jhydrol.2018.05.030.
- Alavi, A.H. and Gandomi, A.H. (2011), "Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural network and simulated annealing", Comput. Struct., 89(23-24), 2176-2194. http://dx.doi.org/10.1016/j.compstruc.2011.08.019.
- Armaghani, D.J., Hajihassani, M., Marto, A., Faradonbeh, R.S. and Mohamad, E.T. (2015), "Prediction of blast-induced air overpressure: a hybrid AI-based predictive model", Environ. Monit. Assess., 187(11), 666. http://dx.doi.org/10.1007/s10661-015-4895-6.
- Baronian, C., Riahi, M.A. and Lucas, C. (2009), "Applicability of artificial neural networks for obtaining velocity models from synthetic seismic data", Int. J. Earth Sci., 98, 1173-1184. https://dx.doi.org/10.1007/s00531-008-0314-3.
- Baudat, G. (2020), "Low-cost wavefront sensing using artificial intelligence (AI) with synthetic data", Proceedings of Society of Photo-Optical Instrumentation Engineers Photonics 11354, Optical Sensing and Detection VI, 113541G, Europe. https://doi.org/10.1117/12.2564070.
- Bose, N.K. and Liang, P. (1993), Neural Networks Fundamentals with Graphs, Algorithms, and Applications, Tata-McGraw-Hill Publishing Company Limited, New Delhi.
- Dauji, S. (2018), "Neural prediction of concrete compressive strength", Int. J. Mater. Struct. Integrit., 12(1/2/3), 17-35. http://dx.doi.org/10.1504/IJMSI.2018.10014931.
- Dauji, S. (2019), "Estimation of corrosion current density from resistivity of concrete with neural network", INAE Lett., 4(2), 111-121. https://doi.org/10.1007/s41403-019-00071-z.
- Dauji, S. (2020), "Prediction accuracy of underground blast variables: decision tree and artificial neural network", Int. J. Earthq. Impact Eng., 3(1), 40-59. https://doi.org/10.1504/IJEIE.2020.105382.
- Ekstrom, J., Rempling, R. and Plos, M. (2016), "Spalling in concrete subjected to shock wave blast", Eng. Struct., 122, 72-82. http://dx.doi.org/10.1016/j.engstruct.2016.05.002.
- Golafshani, E.M. and Pazouki, G. (2018), "Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method", Comput. Concrete, 22(4), 355-363. http://dx.doi.org/10.12989/cac.2018.22.4.419.
- Hajihassani, M., Armaghani, D.J., Sohaei, H., Mohamad, E.T. and Marto, A. (2014), "Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization", Appl. Acoust., 80, 57-67. http://dx.doi.org/10.1016/j.apacoust.2014.01.005.
- Haykin, S.O. (2008), Neural Networks and Machine Learning, Pearson Education, New Delhi.
- Kaya, M. (2018), "Developing a new mutation operator to solve the RC deep beam problems by aid of genetic algorithm", Comput. Concrete, 22(5), 493-500. http://dx.doi.org/10.12989/cac.2018.22.5.493.
- Khandelwal, M. and Singh, T.N. (2006), "Prediction of blast induced ground vibrations and frequency in opencast mine: A neural network approach", J. Sound Vib., 289, 711-725. http://dx.doi.org/10.1016/j.jsv.2005.02.044.
- Khandelwal, M. and Singh, T.N. (2007), "Evaluation of blast-induced ground vibration predictors", Soil Dyn. Earthq. Eng., 27, 116-125. http://dx.doi.org/10.1016/j.soildyn.2006.06.004.
- Khandelwal, M. and Singh, T.N. (2009), "Prediction of blast-induced ground vibration using artificial neural network", Int. J. Rock Mech. Min. Sci., 46, 1214-1222. http://dx.doi.org/10.1016/j.ijrmms.2009.03.004.
- Kostic, S., Perc, M., Vasovic, N. and Trajkovic, S. (2013), "Predictions of Experimentally Observed Stochastic Ground Vibrations Induced by Blasting", PLoS ONE, 8(12), e82056, 1-13. http://dx.doi.org/10.1371/journal.pone.0082056.
- Kot, C.A. (1977), "Spalling of concrete walls under blast load", Proceedings of 4th Structural Mechanics in Reactor Technology SMIRT 4, J10/5, Nuclear Engineering and Design, San Francisco, CA.
- Le, T.A., Baydin, A.G., Zinkov, R. and Wood, F. (2017), "Using synthetic data to train neural networks is model-based reasoning", IEEE Xplore Proceedings of International Joint Conference on Neural Networks (IJCNN), 3514-3521, Anchorage, AK, USA.
- Li, J. and Hao, H. (2014), "Numerical study of concrete spall damage to blast loads", Int. J. Impact Eng., 68, 41-55. http://dx.doi.org/10.1016/j.ijimpeng.2014.02.001.
- Li, J., Wu, C., Hao, H., Wang, Z. and Su, Y. (2016), "Experimental investigation of ultra-high performance concrete slabs under contact explosions", Int. J. Impact Eng., 93, 62-75. http://dx.doi.org/10.1016/j.ijimpeng.2016.02.007.
- Longjun, D., Xibing, L., Ming, X. and Qiyue, L. (2011), "Comparisons of random forest and support vector machine for predicting blasting vibration characteristic parameters", Procedia. 26, 1772-1781. http://dx.doi.org/10.1016/j.proeng.2011.11.2366.
- Lu, Y. (2005), "Underground blast induced ground shock and its modelling using artificial neural network", Comput. Geotech., 32, 164-178. http://dx.doi.org/10.1016/j.compgeo.2005.01.007.
- Marto, A., Hajihassani, M., Armaghani, D.J., Mohamad, E.T. and Makhtar, A.M. (2014), "A novel approach for blast-induced flyrock prediction based on imperialist competitive algorithm and artificial neural network", Scientif. World J., 2014, Article ID 643715, 1-11. http://dx.doi.org/10.1155/2014/643715.
- McVay, M.K. (1988), Spall Damage of Concrete Structures, DTIC Document.
- Minns, A.W. and Hall, M.J. (1996), "Artificial neural networks as rainfall runoff models", Hydrolog. Sci. J., 41(3), 399-418. https://doi.org/10.1080/02626669609491511
- Mitelman, A. and Elmo, D. (2016), "Analysis of tunnel support design to withstand spalling induced by blasting", Tunnel. Underg. Space Technol., 51, 354-361. http://dx.doi.org/10.1016/j.tust.2015.10.006.
- Ordonez, D., Dafonte, C., Manteiga, M. and Arcay, B. (2010), "Parameterization of RVS synthetic stellar spectra for the ESA Gaia mission: Study of the optimal domain for ANN training", Exp. Syst. Appl., 37, 1719-1727. https://dx.doi.org/10.1016/j.eswa.2009.07.038.
- Powell, H.C., Lach, J. and Brandt-Pearce, M. (2010), "Systematic estimation of ANN classification performance employing synthetic data", IEEE Xplore Proceeding of IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2010), Kittila, Finland. https://dx.doi.org/10.1109/MLSP.2010.5589207.
- Raman, H. and Sunilkumar, N. (1995), "Multivariate modelling of water resources time-series using artificial neural networks", Hydrolog. Sci. J., 40(2), 145-163. https://doi.org/10.1080/02626669509491401
- Rashad, M. and Yang, T.Y. (2019), "Improved nonlinear modelling approach of simply supported PC slab under free blast load using RHT model", Comput. Concrete, 23(2), 121-131. http://dx.doi.org/10.12989/cac.2019.23.2.121.
- Remennikov, A.M. and Rose, T.A. (2007), "Predicting the effectiveness of blast wall barriers using neural networks", Int. J. Impact Eng., 34, 1907-1923. http://dx.doi.org/10.1016/j.ijimpeng.2006.11.003.
- Saadat, M., Khandelwal, M. and Monjezi, M. (2013), "An ANNbased approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, Iran", J. Rock Mech. Geotech. Eng., 6(1), 67-76. http://dx.doi.org/10.1016/j.jrmge.2013.11.001.
- Sadaghian, H. and Farzam, M. (2019), "Numerical investigation on punching shear of RC slabs exposed to fire", Comput. Concrete, 23(3), 217-233. http://dx.doi.org/10.12989/cac.2018.23.3.217.
- Sadowski, L., Nikoo, M. and Nikoo, M. (2018), "Concrete compressive strength prediction using the imperialist competitive algorithm", Comput. Concrete, 22(4), 355-363. http://dx.doi.org/10.12989/cac.2018.22.4.355.
- Shirkhani, A., Davarnia, D. and Azar, B.F. (2019), "Prediction of bond strength between concrete and rebar under corrosion using ANN", Comput. Concrete, 23(4), 273-279. http://dx.doi.org/10.12989/cac.2019.23.4.273.
- Smith, J. and Eli, R.N. (1995), "Neural network models of rainfallrunoff process", ASCE J. Water Resour. Plan. Manage., 121(6), 499-508. https://doi.org/10.1061/(ASCE)0733-9496(1995)121:6(499)
- Tsai, H.C. and Liao, M.C. (2019), "Knowledge-based learning for modeling concrete compressive strength using genetic programming", Comput. Concrete, 23(4), 255-265. http://dx.doi.org/10.12989/cac.2019.23.4.255.
- Wasserman, P.D. (1993), Advanced Methods in Neural Computing, Van Nostrand Reinhold Company, New York.
- Wu, L., Peng, Y., Fan, J. and Wang, Y. (2019), "Machine learning models for the estimation of monthly mean daily reference evapotranspiration based on cross-station and synthetic data", Hydrol. Res., 50(6), 1730-1750. https://doi.org/10.2166/nh.2019.060.
- Xu, J., Wu, C., Xiang, H., Su, Y., Li, Z., Fang, Q., Hao, H., Liu, Z., Zhang, Y. and Li, J. (2016), "Behaviour of ultra high performance fibre reinforced concrete columns subjected to blast loading", Eng. Struct., 118, 97-107. http://dx.doi.org/10.1016/j.engstruct.2016.03.048.
- Xu, K. and Lu, Y. (2006), "Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading", Comput. Struct., 84, 431-438. http://dx.doi.org/10.1016/j.compstruc.2005.09.029.
- Xu, P.B., Xu, H. and Wen, H.M. (2016), "3D meso-mechanical modeling of concrete spall tests", Int. J. Impact Eng., 97, 46-56. http://dx.doi.org/10.1016/j.ijimpeng.2016.06.005.
- Yao, S., Zhang, D., Chen, X., Lu, F. and Wang, W. (2016b), "Experimental and numerical study on the dynamic response of RC slabs under blast loading", Eng. Fail. Anal., 66, 120-129. http://dx.doi.org/10.1016/j.engfailanal.2016.04.027.
- Yao, S., Zhang, D., Lu, F., Wang, W. and Chen, X. (2016a), "Damage features and dynamic response of RC beams under blast", Eng. Fail. Anal., 62, 103-111. http://dx.doi.org/10.1016/j.engfailanal.2015.12.001.
- Yavuz, G. (2019), "Determining the shear strength of FRP-RC beams using soft computing and code methods", Comput. Concrete, 23(1), 49-60. http://dx.doi.org/10.12989/cac.2019.23.1.049.
- Zhang, Y., Zhao, K., Li, Y., Gu, J., Ye, Z. and Ma, J. (2018), "Study on the local damage of SFRC with different fraction under contact blast loading", Comput. Concrete, 22(1), 63-70. http://dx.doi.org/10.12989/cac.2018.22.1.063.