References
- Abdollahzadeh, G., Jahani, E. and Kashir, Z. (2016), "Predicting of compressive strength of recycled aggregate concrete by genetic programming", Comput. Concrete, 18(2), 155-163. https://doi.org/10.12989/cac.2016.18.2.155.
- AL-Bodour, W., Tarawneh, B. and Murad, Y. (2020), "Gene expression programming: A model to predict the standard penetration test N60 value from cone penetration test data", Soil Mechanics and Foundation Engineering.
- Atis, C.D. (2003), "Accelerated carbonation and testing of concrete made with fly ash", Constr. Build. Mater., 17(3), 147-152. https://doi.org/10.1016/S0950-0618(02)00116-2.
- Azim, I., Yang, J., Iqbal, M.F., Javed, M.F., Nazar, S., Wang, F. and Liu, Q.F. (2020), "Semi-analytical model for compressive arch action capacity of RC frame structures", Struct., 27, 1231-1245. https://doi.org/10.1016/j.istruc.2020.06.011.
- Bakharev, T., Sanjayan, J. and Cheng, Y.B. (2001), "Resistance of alkali-activated slag concrete to carbonation", Cement Concrete Res., 31(9), 1277-1283. https://doi.org/10.1016/S0008-8846(01)00574-9.
- Beheshti Aval, S.B., Ketabdari, H. and Asil Gharebaghi, S. (2017), "Estimating shear strength of short rectangular reinforced concrete columns using nonlinear regression and gene expression programming", Struct., 12, 13-23. https://doi.org/10.1016/J.ISTRUC.2017.07.002.
- Carevic, V., Ignjatovic, I. and Dragas, J. (2019), "Model for practical carbonation depth prediction for high volume fly ash concrete and recycled aggregate concrete", Constr. Build. Mater., 213, 194-208. https://doi.org/10.1016/j.conbuildmat.2019.03.267.
- Castellote, M. and Andrade, C. (2008), "Modelling the carbonation of cementitious matrixes by means of the unreacted-core model, UR-CORE", Cement Concrete Res., 38(12), 1374-1384. https://doi.org/10.1016/J.CEMCONRES.2008.07.004.
- Cevik, A. and Sonebi, M. (2008), "Modelling the performance of self-compacting SIFCON of cement slurries using genetic programming technique", Comput. Concrete, 5(5), 475-490. https://doi.org/10.12989/cac.2008.5.5.475.
- Dhir, R.K., Munday, J. and Ong, L.T. (1984), "Investigations of the engineering properites of OPC/Pulverised fuel ash concrete: Strength development and maturity", Proc. Inst. Civil Eng., 77(2), 239-254. https://doi.org/10.1680/iicep.1984.1243.
- Ferreira, C. (2002), "Gene expression programming in problem solving", Soft Comput. Indus., Springer London, London. https://doi.org/10.1007/978-1-4471-0123-9_54.
- Gandomi, A.H., Alavi, A.H., Ting, T.O. and Yang, X.S. (2013), Intelligent Modeling and Prediction of Elastic Modulus of Concrete Strength via Gene Expression Programming, Springer, Berlin, Heidelberg, 564-571.
- Gandomi, A.H., Alavi, A.H., Kazemi, S. and Gandomi, M. (2014), "Formulation of shear strength of slender RC beams using gene expression programming, part I: Without shear reinforcement", Autom. Constr., 42, 112-121. https://doi.org/10.1016/J.AUTCON.2014.02.007.
- Gepsoft (2014), Gepsoft GeneXproTools - Data Modeling & Analysis Software. https://www.gepsoft.com.
- Gholampour, A., Gandomi, A.H. and Ozbakkaloglu, T. (2017), "New formulations for mechanical properties of recycled aggregate concrete using gene expression programming", Constr. Build. Mater., 130, 122-145. https://doi.org/10.1016/J.CONBUILDMAT.2016.10.114.
- Gonzalez-Taboada, I., Gonzalez-Fonteboa, B., Martinez-Abella, F. and Perez-Ordonez, J.L. (2016), "Prediction of the mechanical properties of structural recycled concrete using multivariable regression and genetic programming", Constr. Build. Mater., 106, 480-499. https://doi.org/10.1016/J.CONBUILDMAT.2015.12.136.
- Hobbs, D.W. (1988), "Carbonation of concrete containing pfa", Mag. Concrete Res., 40(143), 69-78. https://doi.org/10.1680/macr.1988.40.143.69.
- Hodhod, O.A., Said, T.E. and Ataya, A.M. (2018), "Prediction of creep in concrete using genetic programming hybridized with ANN", Comput. Concrete, 21(5), 513-523. https://doi.org/10.12989/cac.2018.21.5.513.
- Houst, Y.F. (1996) The Role of Moisture in the Carbonation of Cementitious Materials.
- Jafari, S. and Mahini, S.S. (2017), "Lightweight concrete design using gene expression programing", Constr. Build. Mater., 139, 93-100. https://doi.org/10.1016/J.CONBUILDMAT.2017.01.120.
- Jiang, L., Lin, B. and Cai, Y. (2000), "A model for predicting carbonation of high-volume fly ash concrete", Cement Concrete Res., 30(5), 699-702. https://doi.org/10.1016/S0008-8846(00)00227-1.
- Koza, J. (1994), "Genetic programming as a means for programming computers by natural selection", Stat. Comput., 4(2), 87-112. https://doi.org/10.1007/BF00175355.
- Kwon, S.J. and Song, H.W. (2010), "Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling", Cement Concrete Res., 40(1), 119-127. https://doi.org/10.1016/J.CEMCONRES.2009.08.022.
- Lim, J.C., Karakus, M. and Ozbakkaloglu, T. (2016), "Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming", Comput. Struct., 162, 28-37. https://doi.org/10.1016/J.COMPSTRUC.2015.09.005.
- Liu, Q.F., Iqbal, M.F., Yang, J., Lu, X.Y., Zhang, P. and Rauf, M. (2020), "Prediction of chloride diffusivity in concrete using artificial neural network: Modelling and performance evaluation", Constr. Build. Mater., 121082. https://doi.org/10.1016/j.conbuildmat.2020.121082.
- Lo, T.Y., Tang, W.C. and Nadeem, A. (2008), "Comparison of carbonation of lightweight concrete with normal weight concrete at similar strength levels", Constr. Build. Mater., 22(8), 1648-1655. https://doi.org/10.1016/J.CONBUILDMAT.2007.06.006.
- Lo, Y. and Lee, H.M. (2002), "Curing effects on carbonation of concrete using a phenolphthalein indicator and Fourier-transform infrared spectroscopy", Build. Environ., 37(5), 507-514. https://doi.org/10.1016/S0360-1323(01)00052-X.
- Mills, R.H. (1966), "Factors influencing cessation of hydration in water cured cement pastes", Highway Research Board Special Report, 90. https://trid.trb.org/view/101449.
- Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Softw., 45(1), 105-114. https://doi.org/10.1016/J.ADVENGSOFT.2011.09.014.
- Murad, Y., Imam, R., Hajar, H.A., Hammad, A. and Shawash, Z. (2019), "Predictive compressive strength models for green concrete", Int. J. Struct. Integrity, 11(2), 169-184. https://doi.org/10.1108/IJSI-05-2019-0044
- Murad, Y., Abdel-Jabar, H., Diab, A. and Hajar, H.A. (2020), "Exterior RC joints subjected to monotonic and cyclic loading", Eng. Comput. (Swansea, Wales), 37(7), 2319-2336. https://doi.org/10.1108/EC-06-2019-0269.
- Murad, Y. (2020), "Joint shear strength models for exterior RC beam-column connections exposed to biaxial and uniaxial cyclic loading", J. Build. Eng., 30, 101225. https://doi.org/10.1016/j.jobe.2020.101225.
- Murad, Y., Ashteyat, A. and Hunaifat, R. (2019), "Predictive model to the bond strength of FRP-to-concrete under direct pullout using gene expression programming", J. Civil Eng. Manage., 25(8), 773-784. https://doi.org/10.3846/jcem.2019.10798.
- Murad, Y.Z., Hunifat, R. and AL-Bodour, W. (2020), "Interior reinforced concrete beam-to-column joints subjected to cyclic loading: Shear strength prediction using gene expression programming", Case Stud. Constr. Mater., 13, e00432. https://doi.org/10.1016/j.cscm.2020.e00432.
- Nazari, A. and Pacheco Torgal, F. (2013), "Modeling the compressive strength of geopolymeric binders by gene expression programming-GEP", Exp. Syst. Appl., 40(14), 5427-5438. https://doi.org/10.1016/J.ESWA.2013.04.014.
- Obiedat, E. (2011) Prediction of Carbonation Depth in Concrete using Artificial Neural Networks, Jordan University of Science and Technology.
- Osborne, G.J. (1999), "Durability of portland blast-furnace slag cement concrete", Cement Concrete Compos., 21(1), 11-21. https://doi.org/10.1016/S0958-9465(98)00032-8.
- Ozcan, F. (2012), "Gene expression programming based formulations for splitting tensile strength of concrete", Constr. Build. Mater., 26(1), 404-410. https://doi.org/10.1016/J.CONBUILDMAT.2011.06.039.
- Papadakis, V.G., Vayenas, C.G. and Fardis, M.N. (1991), "Fundamental modeling and experimental investigation of concrete carbonation", ACI Mater. J., 88(4), 363-373. https://doi.org/10.14359/1863.
- Peter, M.A., Muntean, A., Meier, S.A. and Bohm, M. (2008), "Competition of several carbonation reactions in concrete: A parametric study", Cement Concrete Res., 38(12), 1385-1393. https://doi.org/10.1016/J.CEMCONRES.2008.09.003.
- Rahman, M.M., Jumaat, M.Z. and Islam, A.B.M.S. (2017), "Weight minimum design of concrete beam strengthened with glass fiber reinforced polymer bar using genetic algorithm", Comput. Concrete, 19(2), 127-131. https://doi.org/10.12989/cac.2017.19.2.127.
- Roy, S.K., Poh, K.B. and Northwood, D.. (1999), "Durability of concrete-accelerated carbonation and weathering studies", Build. Environ., 34(5), 597-606. https://doi.org/10.1016/S0360-1323(98)00042-0.
- Saridemir, M. (2010), "Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash", Constr. Build. Mater., 24(10), 1911-1919. https://doi.org/10.1016/j.conbuildmat.2010.04.011.
- Saridemir, M. (2017), "Modelling the flexural strength of mortars containing different mineral admixtures via GEP and RA", Comput. Concrete, 19(6), 717-724. https://doi.org/10.12989/cac.2017.19.6.717.
- Shirkhani, A., Davarnia, D. and Azar, B.F. (2019), "Prediction of bond strength between concrete and rebar under corrosion using ANN", Comput. Concrete, 23(4), 273-279. https://doi.org/10.12989/cac.2019.23.4.273.
- Soleimani, S., Rajaei, S., Jiao, P., Sabz, A. and Soheilinia, S. (2018), "New prediction models for unconfined compressive strength of geopolymer stabilized soil using multi-gen genetic programming", Measure., 113, 99-107. https://doi.org/10.1016/J.MEASUREMENT.2017.08.043.
- Sonebi, M. and Cevik, A. (2009), "Genetic programming based formulation for fresh and hardened properties of self-compacting concrete containing pulverised fuel ash", Constr. Build. Mater., 23(7), 2614-2622. https://doi.org/10.1016/J.CONBUILDMAT.2009.02.012.
- Song, H.W., Kwon, S.J., Byun, K.J. and Park, C.K. (2006), "Predicting carbonation in early-aged cracked concrete", Cement Concrete Res., 36(5), 979-989. https://doi.org/10.1016/J.CEMCONRES.2005.12.019.
- Steffens, A., Dinkler, D. and Ahrens, H. (2002), "Modeling carbonation for corrosion risk prediction of concrete structures", Cement Concrete Res., 32(6), 935-941. https://doi.org/10.1016/S0008-8846(02)00728-7.
- Taffese, W.Z., Sistonen, E. and Puttonen, J. (2015), "CaPrM: Carbonation prediction model for reinforced concrete using machine learning methods", Constr. Build. Mater., 100, 70-82. https://doi.org/10.1016/j.conbuildmat.2015.09.058.
- Wang, X.Y. and Lee, H.S. (2009), "A model for predicting the carbonation depth of concrete containing low-calcium fly ash", Constr. Build. Mater., 23(2), 725-733. https://doi.org/10.1016/J.CONBUILDMAT.2008.02.019.