References
- ABAQUS (1998), User's Manual, Hibbitt, Karlsson, and Sorensen, Inc., Providence, RI, U.S.A.
- ACI 209R-02, Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures.
- ACI 318-19 (2019), Building Code Requirements for Reinforced Concrete and Commentary, American Concrete Institute (ACI), Detroit.
- Afaghi-Darabi, A. and Abdollahzadeh, G. (2019), "Effect of cooling rate on the post-fire behavior of CFST column", Comput. Concrete, 23(4), 281-294. https://doi.org/10.12989/cac.2019.23.4.281.
- AISC 360-16 (2016), Specification for Structural Steel Buildings, American Institute of Steel Construction; Chicago, USA.
- ASTM E8 / E8M-16a Standars Test methods for Tension Testing of Metalic Materials.
- BS EN 1994-1-1 (2004), Eurocode 4: Design of Composite Steel and Concrete Structures-Part 1-1: General Rules and Rules for Buildings,British Standards Institution, London, UK.
- CAN/CSA S16 (2014), Limit States Design of Steel Structures, Canadian Standards Association, Ontario, Canada.
- Ekmekyapar, T. and Al-Eliwi, B.J. (2016), "Experimental behaviour of circular concrete filled steel tube columns and design specifications", Thin Wall. Struct., 105, 220-230. https://doi.org/10.1016/j.tws.2016.04.004.
- Ekmekyapar, T. and Alhatmey, I.A. (2019), "Post-fire resistance of internally ring stiffened high performance concrete filled steel tube columns", Eng. Struct., 183, 375-388. https://doi.org/10.1016/j.engstruct.2019.01.024.
- Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001.
- Han, L.H. and Huo, J.S. (2003), "Concrete-filled hollow structural steel columns after exposure to ISO-834 fire standard", J. Struct. Eng., 129(1), 68-78. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:1(68).
- Han, L.H., Huo, J.S. and Wang, Y.C. (2005b), "Compressive and flexural behaviour of concrete filled steel tubes after exposure to standard fire", J. Constr. Steel Res., 61(7), 882-901. https://doi.org/10.1016/j.jcsr.2004.12.005.
- Han, L.H., Yang, Y.F., Yang, H. and Huo, J.S. (2002), "Residual strength of concrete-filled RHS columns after exposure to the ISO-834 standard fire", Thin Wall. Struct., 40(12), 991-1012. https://doi.org/10.1016/S0263-8231(02)00044-7.
- Han, L.H., Yao, G.H. and Tao, Z. (2007), "Performance of concrete-filled thin-walled steel tubes under pure torsion", Thin Wall. Struct., 45(1), 24-36. https://doi.org/10.1016/j.tws.2007.01.008.
- Han, L.H., Yao, G.H. and Zhao, X.L. (2005a), "Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)", J. Constr. Steel Res., 61(9), 1241-1269. https://doi.org/10.1016/j.jcsr.2005.01.004.
- Han, L.H., Zhao, X.L. and Tao, Z. (2001), "Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns", Steel Compos. Struct., 1(1), 51-74. https://doi.org/10.12989/scs.2001.1.1.051.
- Han, L.H., Zhao, X.L. and Tao, Z. (2001). "Tests and mechanics model for concrete-filled SHS stub columns, columns and beamcolumns", Steel Compos. Struct., 1(1), 51-74. http://dx.doi.org/10.12989/scs.2001.1.1.051.
- Han, L.H., Zhao, X.L., Yang, Y.F. and Feng, J.B. (2003), "Experimental study and calculation of fire resistance of concrete-filled hollow steel columns", J. Struct. Eng., 129(3), 346-356. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:3(346).
- Huo, J., Huang, G. and Xiao, Y. (2009), "Effects of sustained axial load and cooling phase on post-fire behaviour of concrete-filled steel tubular stub columns", J. Constr. Steel Res., 65(8-9), 1664- 1676. https://doi.org/10.1016/j.jcsr.2009.04.022.
- Ibanez, C., Bisby, L., Rush, D., Romero, M.L. and Hospitaler, A. (2019), "Post-heating response of concrete-filled steel tubular columns under sustained loads", J. Struct., 21(1), 90-102. https://doi.org/10.1016/j.istruc.2019.04.003.
- ISO (1975) Fire Resistance Tests-Elements of Building Construction, International Standard ISO 834, Geneva.
- Jafarzadeh, H. and Nematzadeh, M. (2020), "Evaluation of post-heating flexural behavior of steel fiber-reinforced high-strength concrete beams reinforced with FRP bars: Experimental and analytical results", Eng. Struct., 225, 111292. https://doi.org/10.1016/j.engstruct.2020.111292.
- Karimi, A. and Nematzadeh, M. (2020), "Axial compressive performance of steel tube columns filled with steel fiber-reinforced high strength concrete containing tire aggregate after exposure to high temperatures", Eng. Struct., 219, 110608. https://doi.org/10.1016/j.engstruct.2020.110608.
- Kwan, A.K.H., Dong, C.X. and Ho, J.C.M. (2016), "Axial and lateral stress-strain model for circular concrete-filled steel tubes with external steel confinement", Eng. Struct., 117, 528-541. https://doi.org/10.1016/j.engstruct.2016.03.026.
- Li, W., Luo, Z., Tao, Z., Duan, W.H. and Shah, S.P. (2017), "Mechanical behavior of recycled aggregate concrete-filled steel tube stub columns after exposure to elevated temperatures", Constr. Build. Mater., 146, 571-581. https://doi.org/10.1016/j.conbuildmat.2017.04.118.
- Liu, F., Gardner, L. and Yang, H. (2014), "Post-fire behaviour of reinforced concrete stub columns confined by circular steel tubes", J. Constr. Steel Res., 102, 82-103. https://doi.org/10.1016/j.jcsr.2014.06.015.
- Liu, J.Q., Han, L.H. and Zhao, X.L. (2017), "Performance of concrete-filled steel tubular column-wall structure subjected to ISO-834 standard fire: Experimental study and FEA modelling", Thin Wall. Struct., 120, 479-494. https://doi.org/10.1016/j.tws.2017.09.014.
- Liu, J.Q., Han, L.H. and Zhao, X.L. (2018), "Performance of concrete-filled steel tubular column-wall structure subjected to ISO-834 standard fire: analytical behavior", Thin Wall. Struct., 129, 28-44. https://doi.org/10.1016/j.tws.2018.03.027.
- Lu, H., Zhao, X.L. and Han, L.H. (2009), "Fire behaviour of high strength self-consolidating concrete filled steel tubular stub columns", J. Constr. Steel Res., 65(10-11), 1995-2010. https://doi.org/10.1016/j.jcsr.2009.06.013.
- Mousavimehr, M. and Nematzadeh, M. (2020), "Post-heating flexural behavior and durability of hybrid PET-Rubber aggregate concrete", Constr. Build. Mater., 265, 120359. https://doi.org/10.1016/j.conbuildmat.2020.120359.
- Nematzadeh, M. and Fazli, S. (2020), "Effect of axial loading conditions and confinement type on concrete-steel composite behavior", Comput. Concrete, 25(2), 95-109. https://doi.org/10.12989/cac.2020.25.2.095.
- Nematzadeh, M. and Ghadami, J. (2017), "Evaluation of interfacial shear stress in active steel tube-confined concrete columns", Comput. Concrete, 20(4), 469-481. https://doi.org/10.12989/cac.2017.20.4.469.
- Nematzadeh, M. and Haghinejad, A. (2017), "Analysis of actively-confined concrete columns using prestressed steel tubes", Comput. Concrete, 19(5), 477-488. https://doi.org/10.12989/cac.2017.19.5.477.
- Nematzadeh, M., Karimi, A. and Fallah-Valukolaee, S. (2020c), "Compressive performance of steel fiber-reinforced rubberized concrete core detached from heated CFST", Constr. Build. Mater., 239, 117832. https://doi.org/10.1016/j.conbuildmat.2019.117832.
- Nematzadeh, M., Karimi, A. and Gholampour, A. (2020a), "Pre-and post-heating behavior of concrete-filled steel tube stub columns containing steel fiber and tire rubber", Struct., 27, 2346-2364. https://doi.org/10.1016/j.istruc.2020.07.034.
- Nematzadeh, M., Memarzadeh, A. and Karimi, A. (2020b), "Post-fire elastic modulus of rubberized fiber-reinforced concretefilled steel tubular stub columns: Experimental and theoretical study", J. Constr. Steel Res., 175, 106310. https://doi.org/10.1016/j.jcsr.2020.106310.
- Nematzadeh, M., Shahmansouri, A.A. and Fakoor, M. (2020d), "Post-fire compressive strength of recycled PET aggregate concrete reinforced with steel fibers: Optimization and prediction via RSM and GEP", Constr. Build. Mater., 252, 119057. https://doi.org/10.1016/j.conbuildmat.2020.119057.
- Peng, G.F., Yang, W.W., Zhao, J., Liu, Y.F., Bian, S.H. and Zhao, L.H. (2006), "Explosive spalling and residual mechanical properties of fiber-toughened high-performance concrete subjected to high temperatures", Cement Concrete Res., 36(4), 723-727. https://doi.org/10.1016/j.cemconres.2005.12.014.
- Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180).
- Song, Q.Y., Han, L.H., Zhou, K. and Feng, Y. (2018), "Fire resistance of circular concrete-filled steel tubular (CFST) column protected by intumescent coating", J. Constr. Steel Res., 147, 154-170. https://doi.org/10.1016/j.jcsr.2018.03.038.
- Song, T.Y., Han, L.H. and Uy, B. (2010), "Performance of CFST column to steel beam joints subjected to simulated fire including the cooling phase", J. Constr. Steel Res., 66(4), 591-604. https://doi.org/10.1016/j.jcsr.2009.12.006.
- Tan, Q.H., Han, L.H. and Yu, H.X. (2012), "Fire performance of concrete filled steel tubular (CFST) column to RC beam joints", Fire Saf. J., 51, 68-84. https://doi.org/10.1016/j.firesaf.2012.03.002.
- Ukanwa, K.U., Clifton, G.C., Lim, J.B., Hicks, S.J., Sharma, U. and Abu, A. (2018), "Simple design procedure for concrete filled steel tubular columns in fire", Eng. Struct., 155, 144-156. https://doi.org/10.1016/j.engstruct.2017.10.062.
- Wei, L.I.U. and Lin-hai, H.A.N. (2006), "Behaviors of concretefilled steel tubes subject axial local compression", China Civil Eng. J., 39(6), 19-27. https://doi.org/10.3321/j.issn:1000-131X.2006.06.004
- Xiong, M.X. and Liew, J.R. (2016), "Mechanical behaviour of ultra-high strength concrete at elevated temperatures and fire resistance of ultra-high strength concrete filled steel tubes", Mater. Des., 104, 414-427. https://doi.org/10.1016/j.matdes.2016.05.050.
- Yang, H., Han, L.H. and Wang, Y.C. (2008), "Effects of heating and loading histories on post-fire cooling behaviour of concrete-filled steel tubular columns", J. Constr. Steel Res., 64(5), 556-570. https://doi.org/10.1016/j.jcsr.2007.09.007.
- Yang, H., Liu, F. and Gardner, L. (2015), "Post-fire behaviour of slender reinforced concrete columns confined by circular steel tubes", Thin Wall. Struct., 87, 12-29. https://doi.org/10.1016/j.tws.2014.10.014.
- Yao, Y. and Hu, X.X. (2015), "Cooling behavior and residual strength of post-fire concrete filled steel tubular columns", J. Constr. Steel Res., 112, 282-292. https://doi.org/10.1016/j.jcsr.2015.05.020.
- Zhu, W.C., Ling, L., Tang, C.A., Kang, Y.M. and Xie, L.M. (2012), "The 3 D-numerical simulation on failure process of concrete-filled tubular (CFT) stub columns under uniaxial compression", Comput. Concrete, 9(4), 257-273. https://doi.org/10.12989/cac.2012.9.4.257.