DOI QR코드

DOI QR Code

Big data platform for health monitoring systems of multiple bridges

  • Wang, Manya (Key Laboratory of C&PC Structures of the Ministry of Education, Southeast University) ;
  • Ding, Youliang (Key Laboratory of C&PC Structures of the Ministry of Education, Southeast University) ;
  • Wan, Chunfeng (Key Laboratory of C&PC Structures of the Ministry of Education, Southeast University) ;
  • Zhao, Hanwei (Key Laboratory of C&PC Structures of the Ministry of Education, Southeast University)
  • 투고 : 2020.04.23
  • 심사 : 2020.06.09
  • 발행 : 2020.12.25

초록

At present, many machine leaning and data mining methods are used for analyzing and predicting structural response characteristics. However, the platform that combines big data analysis methods with online and offline analysis modules has not been used in actual projects. This work is dedicated to developing a multifunctional Hadoop-Spark big data platform for bridges to monitor and evaluate the serviceability based on structural health monitoring system. It realizes rapid processing, analysis and storage of collected health monitoring data. The platform contains offline computing and online analysis modules, using Hadoop-Spark environment. Hadoop provides the overall framework and storage subsystem for big data platform, while Spark is used for online computing. Finally, the big data Hadoop-Spark platform computational performance is verified through several actual analysis tasks. Experiments show the Hadoop-Spark big data platform has good fault tolerance, scalability and online analysis performance. It can meet the daily analysis requirements of 5s/time for one bridge and 40s/time for 100 bridges.

키워드

과제정보

The research described in this paper was financially supported by the Distinguished Young Scientists of Jiangsu Province (No. BK20190013) and the National Natural Science Foundation of China (Grants. 51978154 and 52008099).

참고문헌

  1. Bao, Y.Q., Li, H., Sun, X.D., Yu, Y. and Ou, J.P. (2012), "Compressive sampling-based data loss recovery for wireless sensor networks used in civil structural health monitoring", Struct. Health Monit., 12(1), 78-95. https://doi.org/10.1177/1475921712462936.
  2. Beltempo, A., Cappello, C., Zonta, D., Bonelli, A., Bursi, O.S., Costa, C. and Pardatscher, W. (2015), "Structural Health Monitoring of the Colle Isarco Viaduct", Workshop on Environmental Engergy and Structural Monitoring Systems, 7-11. https://doi.org/10.1109/EESMS.2015.7175843.
  3. Cao, B.Y., Ding, Y.L., Zhao, H.W. and Song, Y.S. (2016), "Damage identification for high-speed railway truss arch bridge using fuzzy clustering analysis". Struct. Monit. Maint., 3(4), 315-333. https://doi.org/10.12989/smm.2016.3.4.315.
  4. Chen, D., et al. (2017), "Real-time or near real-time persisting daily healthcare data into HDFS and ElasticSearch index inside a big data platform", IEEE T. Ind. Inform., 13(2), 595-606. https://doi.org/10.1109/TII.2016.2645606.
  5. Chouliaras, S. and Sotiriadis, S. (2019), "Real-Time Anomaly Detection of NoSQL Systems Based on Resource Usage Monitoring", IEEE T. Ind. Inform., 16(9), 6042-6049, https://doi:10.1109/TII.2019.2958606.
  6. Ding, Y.L., Wang, C., Zhao, H.W., Yue, Q. and Wu, L.Y. (2016), "Vehicle-bridge resonance analysis of dashengguan bridge based on vibration acceleration monitoring", J. Railway Eng. Soc., 33(9), 48-54. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000932.
  7. Ding, Y.L., Zhao, H.W., Deng, L., Li, A.Q. and Wang, M.Y. (2017), "Early Warning of Abnormal Train-Induced Vibrations for a Steel-Truss Arch Railway Bridge: Case Study", J. Bridge Eng., 22(11), 05017011.1-05017011.12. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001143.
  8. Ding, Z.Y., Mei, G., Cuomo, S., Li, Y.X. and Xu, N.X. (2018), "Comparison of estimating missing values in IOT time series data using different interpolation algorithms", Int. J. Parallel Program., 48(3), 534-548. https://doi.org/10.1007/s10766-018-0595-5.
  9. Furuta, H., He, J.H. and Watanabe, E. (1996), "A Fuzzy Expert System for Damage Assessment Using Genetic Algorithms and Neural Networks", Comput. - Aided Civil Infrastruct. Eng., 11(1), 37-45. https://doi.org/10.1111/j.1467-8667.1996.tb00307.x.
  10. Garcia-Valls, M., Abhishek, D. and Vicent, B. (2018), "Introducing the new paradigm of social dispersed computing: applications, technologies and challenges", Journal of Systems Architecture, 91, 83-102. https://doi.org/10.1016/j.sysarc.2018.05.007.
  11. Garcia-Valls, M., Calva-Urrego, C. and Garcia-Fornes, A. (2018), "Accelerating smart eHealth services execution at the fog computing infrastructure", Future Generation Computer Systems, S0167739X17327425. https://doi.org/10.1016/j.future.2018.07.001.
  12. Guo, J.Q., Xie, X.B., Bie, R.F. and Sun, L.M. (2014), "Structural health monitoring by using a sparse codingbased deep learning algorithm with wireless sensor networks", Personal & Ubiquitous Comput., 18(8), 1977-1987. https://doi.org/10.1007/s00779-014-0800-5.
  13. Guo, S., Luo, H. and Yong, L. (2015), "A big data-based workers behavior observation in china metro construction", Procedia Eng., 123, 190-197. https://doi.org/10.1016/j.proeng.2015.10.077.
  14. Han, S.H. (2017), "Optimal safety valuation of high-speed railway bridges based on reliability assessment and life-cycle cost concept", Int. J. Steel Struct., 17(1), 339-349. https://doi.org/10.1007/s13296-014-0165-7.
  15. Huang, Y., Beck, J.L., Wu, S. and Li, H. (2016), "Bayesian compressive sensing for approximately sparse signals and application to structural health monitoring signals for data loss recovery", Probabilist. Eng. Mech., 46, 62-79. http://dx.doi.org/10.1016/j.probengmech.2016.08.001.
  16. Huang, Y.W. et al. (2010), "Lost strain data reconstruction based on least squares support vector machine", Measurement Control Technol., 29, 8-12. http://doi.org/10.2991/icacsei.2013.159.
  17. Jagadish, H.V., Gehrke, J., Labrinidis, A. and Papakonstantinou, Y. (2014), "Big data and its technical challenges", Communications of the ACM, 57(7), 86-94. https://doi.org/10.1145/2611567.
  18. Jeong, S., Zhang, Y.L., O'Connor, S., Lynch, J.P., Sohn, H. and Law, K.H. (2016), "A NoSQL data management infrastructure for bridge monitoring", Smart Struct. Syst., 17(4), 669-690. http://doi.org/10.12989/sss.2016.17.4.669.
  19. Kawamura, K., Miyamoto, A., Frangopol, D. M. and Kimura, R. (2003), "Performance Evaluation of Concrete Slab of Existing Bridges Using Neural Networks", Eng. Struct., 25(12), 1455-1477. https://doi.org/10.1016/S0141-0296(03)00112-3.
  20. Landset, S., Khoshgoftaar, T.M., Richter, A.N. and Hasanin, T. (2015), "A survey of open source tools for machine learning with big data in the Hadoop ecosystem", J. Big Data, 2(1), 1-36. http://doi.org/10.1186/s40537-015-0032-1.
  21. Liu, H., Ding, Y.L., Zhao, H.W, Wang, M.Y. and Geng, F.F. (2020), "Deep learning-based recovery method for missing structural temperature data using LSTM network", Struct. Monit. Maint., 7(2), 109-124. https://doi.org/10.12989/smm.2020.7.2.109.
  22. Memmolo, V., Pasquino, N. and Ricci, F. (2018), "Experimental characterization of a damage detection and localization system for composite structures", Measurement, 129, 381-388. https://doi.org/10.1016/j.measurement.2018.07.032.
  23. Nguyen, C.U., Huynh, T.C. and Kim, J.T. (2018), "Vibration- based damage detection in wind turbine towers using artificial neural networks", Struct. Monit. Maint., 5(4), 507-519. https://doi.org/10.12989/smm.2018.5.4.507.
  24. Nick, W., Asamene, K., Bullock, G., Esterline, A. and Sundaresan, M. (2015), "A study of machine learning techniques for detecting and classifying structural damage", Int. J. Machine Learning Comput., 5(4), 313-318. https://doi.org/10.7763/IJMLC.2015.V5.526.
  25. Okasha, N.M. and Frangopol, D.M. (2012), "Integration of structural health monitoring in a system performance based life-cycle bridge management framework", Struct. Infrastruct. Eng., 8(11), 999-1016. https://doi.org/10.1080/15732479.2010.485726.
  26. Praveen, D.S. and Raj, D.P. (2020), "Smart traffic management system in metropolitan cities", J. Ambient Intelligence and Humanized Comput., 1-13. https://doi.org/10.1007/s12652-020-02453-6.
  27. Ren, D.M., Rahal, I. and Perrizo, W. (2004), "A vertical outlier detection algorithm with clusters as byproduct", International Conference on Tools with Artificial Intelligence, (2004), 22-29. https://doi.org/10.1109/ICTAI.2004.22.
  28. Satti, Fahad Ahmed, et al. (2020), "Ubiquitous Health Profile (UHPr): a big data curation platform for supporting health data interoperability", Computing, 1-36. https://doi.org/10.1007/s00607-020-00837-2 .
  29. Sayed, M.A., Kaloop, M.R., Kim, E. and Kim, D. (2017), "Assessment of acceleration responses of a railway bridge using wavelet analysis", KSCE J. Civil Eng., 21(5), 1844-1853. https://doi.org/10.1007/s12205-016-1762-0.
  30. White, T. (2012), "Hadoop: the definitive guide", O'Reilly Media Inc. Gravenstein Highway North, 215(11), 1-4. http://dx.doi.org/10.9774/GLEAF.978-1-909493-38-4_2.
  31. Yang, Y. and Nagarajaiah, S. (2016), "Harnessing data structure for recovery of randomly missing structural vibration responses time history: sparse representation versus low-rank structure", Mech. Syst. Signal Pr., 74, 165-182. http://dx.doi.org/10.1016/j.ymssp.2015.11.009.
  32. Zhang, W.J. and Huang, Y.P. (2019), "Using big data computing framework and parallelized PSO algorithm to construct the reservoir dispatching rule optimization", Soft Computing, 24(11), 8113-8124. http://doi.org/10.1007/s00500-019-04188-9.
  33. Zhao, H.W., Ding, Y.L., An, Y.H. and Li, A.Q. (2016), "Transverse dynamic mechanical behavior of hangers in the rigid tied-arch bridge under train loads", J. Perform. Constr. Fac., 31(1), 04016072. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000932.
  34. Zhao, H.W., Ding, Y.L., Geng, F.F. and Li, A.Q. (2018), "RAMS evaluation for a steel-truss arch highspeed railway bridge based on SHM system", Struct. Monit. Maint., 5(1), 79-92. https://doi.org/10.12989/smm.2018.5.1.079.
  35. Zhao, H.W., Ding, Y.L., Li, A.Q., Ren, Z.Z. and Yang, K. (2019), "Live-load strain evaluation of the prestressed concrete box-girder bridge using deep learning and clustering", Struct. Health Monit., 147592171987563. https://doi.org/10.1177/1475921719875630.
  36. Zhao, H.W., Ding, Y.L., Nagarajaiah, S. and Li, A.Q. (2019), "Longitudinal displacement behavior and girder end reliability of a jointless steel-truss arch railway bridge during operation", Appl. Sci., 9(11), 2222. http://doi.org/10.3390/app9112222.
  37. Zhao, L. and Yin, A.J. (2015), "High-order partial differential equation de-noising method for vibration signal", Math. Method. Appl. Sci., 38(5), 937-947. https://doi.org/10.1002/mma.3119.