DOI QR코드

DOI QR Code

Multi-variate Empirical Mode Decomposition (MEMD) for ambient modal identification of RC road bridge

  • Mahato, Swarup (Department of Components and System, Gustave Eiffel University) ;
  • Hazra, Budhaditya (Department of Civil Engineering, Indian Institute of Technology Guwahati) ;
  • Chakraborty, Arunasis (Department of Civil Engineering, Indian Institute of Technology Guwahati)
  • 투고 : 2020.02.20
  • 심사 : 2020.10.20
  • 발행 : 2020.12.25

초록

In this paper, an adaptive MEMD based modal identification technique for linear time-invariant systems is proposed employing multiple vibration measurements. Traditional empirical mode decomposition (EMD) suffers from mode-mixing during sifting operations to identify intrinsic mode functions (IMF). MEMD performs better in this context as it considers multi-channel data and projects them into a n-dimensional hypercube to evaluate the IMFs. Using this technique, modal parameters of the structural system are identified. It is observed that MEMD has superior performance compared to its traditional counterpart. However, it still suffers from mild mode-mixing in higher modes where the energy contents are low. To avoid this problem, an adaptive filtering scheme is proposed to decompose the interfering modes. The Proposed modified scheme is then applied to vibrations of a reinforced concrete road bridge. Results presented in this study show that the proposed MEMD based approach coupled with the filtering technique can effectively identify the parameters of the dominant modes present in the structural response with a significant level of accuracy.

키워드

참고문헌

  1. Antoni, J., Garibaldi, L., Marchesiello, S. and Sidhamed, M. (2004), "New separation techniques for outputonly modal analysis", J. Shock Vib., 11(3-4), 227-242. https://doi.org/10.1155/2004/560576.
  2. Chen, B., Hua, X.G., Zhang, Z.L., Basu, B. and Nielsen, S.R.K. (2017), "Monitoring of wind turbine blades for flutter instability", Struct. Monit. Maint., 4(2), 115-131. https://doi.org/10.12989/smm.2017.4.2.115.
  3. Chen, G. and Wang, Z. (2012), "A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components", Mech. Syst. Signal Pr., 28, 258-279. https://doi.org/10.1016/j.ymssp.2011.02.002.
  4. Fleureau, J., Kachenoura, A., Albera, L., Nunes, J.C. and Senhadji, L. (2011), "Multivariate empirical mode decomposition and application to multichannel filtering", Signal Process., 91(12), 2783-2792. https://doi.org/10.1016/j.sigpro.2011.01.018.
  5. Hazra, B., Roffel, A.J., Narasimhan, S. and Pandey, M.D. (2010), "Modified cross-correlation method for blind identification of structures", J. Eng. Mech., 136(7), 889-897. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000133.
  6. Hazra, B., Sadhu, A., Roffel, A.J. and Narasimhan, S. (2012b), "Hybrid time-frequency blind source separation towards ambient system identification of structures", Comput.- Aided Civil Infrastruct. Eng., 27(5), 314-332. https://doi.org/10.1111/j.1467-8667.2011.00732.x.
  7. Hazra, B., Sadhu, A., Roffel, A.J., Paquet, P.E. and Narasimhan, S. (2012a), "Underdetermined blind identification of structure by using the modified cross-correlation method", J. Eng. Mech., 138(4), 327-337. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000328.
  8. He, X.H., Hua, X.G., Chen, Z.Q. and Huang, F.L. (2011), "EMD-based random decrement technique for modal parameter identification of an existing railway bridge", Eng. Struct., 33(4), 1348-1356. https://doi.org/10.1016/j.engstruct.2011.01.012.
  9. Huang, C. and Nagarajaiah, S. (2014), "Experimental study on bridge structural health monitoring using blind source separation method: arch bridge", Struct. Monit. Maint., 1(1), 69-87. http://dx.doi.org/10.12989/smm.2014.1.1.069.
  10. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H. (1998), "The Empirical Mode Decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis", Proc. Roy. Soc. London, 454, 903-995. https://doi.org/10.1098/rspa.1998.0193.
  11. Huang, N.E., Wu, M.L., Long, S.R., Shen, S.S., Qu, W., Gloersen, P. and Fan, K.L. (2003), "A confidence limit for the empirical mode decomposition and Hilbert spectral analysis", Proc. Roy. Soc. London, 459, 2317-2345. https://doi.org/10.1098/rspa.2003.1123.
  12. Li, H.N., Yi, T.H., Ren, L., Li, D.S. and Huo, L.S. (2014), "Reviews on innovations and applications in structural health monitoring for infrastructures", Struct. Monit. Maint., 1(1), 1-4. https://doi.org/10.12989/smm.2014.1.1.001.
  13. Mahato, S. and Chakraborty, A. (2016), "EKF based parameter identification of LTI system from seismic response measurements", Procedia Eng., 144, 360-365. https://doi.org/10.1016/j.proeng.2016.05.144.
  14. Mahato, S. and Chakraborty, A. (2019), "Sequential clustering of synchrosqueezed wavelet transform coefficients for efficient modal identification", J. Civil Struct. Health Monit., 9(2), 271-291. https://doi.org/10.1007/s13349-019-00326-x.
  15. Mahato, S., Datta, D., Chakraborty, A. and Dutta, A. (2020), "PCA Based Condition Assessment of RC Framed Building", Advances in Rotor Dynamics, Control, and Structural Health Monitoring, Springer, Singapore. https://doi.org/10.1007/978-981-15-5693-7_20.
  16. Mahato, S., Teja, M.V. and Chakraborty, A. (2015), "Adaptive HHT (AHHT) based modal parameter estimation from limited measurements of an RC-framed building under multi-component earthquake excitations", Struct. Control Health Monit., 22(7), 984-1001. https://doi.org/10.1002/stc.1727.
  17. Mahato, S., Teja, M.V. and Chakraborty, A. (2017), "Combined wavelet-Hilbert transform-based modal identification of road bridge using vehicular excitation", J. Civil Struct. Health Monit., 7(1), 29-44. https://doi.org/10.1007/s13349-017-0206-y.
  18. Maia, N.M.M. and Silva, J.M.M. (2001), "Modal analysis identification techniques", Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 359(1778), 29-40. https://doi.org/10.1098/rsta.2000.0712.
  19. Ong, K.C.G., Wang, Z. and Maalej, M. (2008), "Adaptive magnitude spectrum algorithm for Hilbert-Huang transform based frequency identification", Eng. Struct., 30(1), 33-41. https://doi.org/10.1016/j.engstruct.2007.02.018.
  20. Peng, Z.K., Peter, W.T. and Chu, F.L. (2005a), "A comparison study of improved Hilbert-Huang transform and wavelet transform: application to fault diagnosis for rolling bearing", Mech. Syst. Signal Pr., 19(5), 974-988. https://doi.org/10.1016/j.ymssp.2004.01.006.
  21. Peng, Z.K., Peter, W.T. and Chu, F.L. (2005b), "An improved Hilbert-Huang transform and its application in vibration signal analysis", J. Sound Vib., 286(1), 187-205. https://doi.org/10.1016/j.jsv.2004.10.005.
  22. Rehman, N. and Mandic, D.P. (2010a), "Empirical mode decomposition for trivariate signals", IEEE T. Signal Process., 58(3), 1059-1068. 10.1109/TSP.2009.2033730.
  23. Rehman, N. and Mandic, D.P. (2010b), "Multivariate empirical mode decomposition", Proceedings of The Royal Society A, 466, 1291-1302. https://doi.org/10.1098/rspa.2009.0502.
  24. Rehman, N. and Mandic, D. P. (2011), "Filter bank property of multivariate empirical mode decomposition", IEEE T. Signal Process., 59(5), 2421-2426. 10.1109/TSP.2011.2106779.
  25. Staszewski, W.J. and Robertson, A.N. (2007), "Time-frequency and time-scale analyses for structural health monitoring", Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 365(1851), 449-477. https://doi.org/10.1098/rsta.2006.1936.
  26. Vandiver, J.K., Dunwoody, A.B., Campbell, R.B. and Cook, M.F. (1982), "A mathematical basis for the random decrement vibration signature analysis technique", J. Mech. Design, 104, 307-313. https://doi.org/10.1115/1.3256341.
  27. Wu, Z. and Huang, N.E. (2009), "Ensemble empirical mode decomposition: a noise-assisted data analysis method", Adv. Adaptive Data Anal., 1(1), 1-41. https://doi.org/10.1142/S1793536909000047.
  28. Yang, J.N., Lei, Y., Lin, S. and Huang, N. (2004), "Identification of natural frequencies and dampings of insitu tall buildings using ambient wind vibration data", J. Eng. Mech., 130(5), 570-577. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:5(570).
  29. Yang, J.N., Lei, Y., Pan, S. and Huang, N. (2003), "System identification of linear structures based on Hilbert Huang spectral analysis. Part 1: normal modes", Earthq. Eng. Struct. D., 32(9), 1443-1467. https://doi.org/10.1002/eqe.287.
  30. Yang, Y., Dorn, C., Farrar, C. and Mascarenas, D. (2020), "Blind, simultaneous identification of full-field vibration modes and large rigid-body motion of output-only structures from digital video measurements", Eng. Struct., 207, 110183. https://doi.org/10.1016/j.engstruct.2020.110183
  31. Zhao, H.W., Ding, Y.L., Geng, F.F. and Li, A.Q. (2018), "RAMS evaluation for a steel-truss arch high-speed railway bridge based on SHM system", Struct. Monit. Maint., 5(1), 79-82. https://doi.org/10.12989/smm.2018.5.1.079.
  32. Zhao, X., Patel, T.H. and Zuo, M.J. (2012), "Multivariate EMD and full spectrum based condition monitoring for rotating machinery", Mech. Syst. Signal Pr., 27, 712-728. https://doi.org/10.1016/j.ymssp.2011.08.001.