References
- T. Matsuo and M. Esashi. (1981), Methods of ISFET fabrication. Sensors and Actuators. 1, pp. 77-96. Available: 10.1016/0250-6874(81)80006-6
- W.-S. Kao, Y.-W. Hung and C.-H. Lin. (2020, Aug). SolidState Sensor Chip Produced with Single Laser Engraving for Urine Acidity and Total Dissolved Ion Detections. ECS Journal of Solid State Science and Technology. 9(11), Available: 10.1149/2162-8777/abac92
- T. Wadhera, D. Kakkar, G. Wadhwa and B. Raj. (2019, Oct). Recent advances and progress in development of the field effect transistor biosensor: A review. Journal of Electronic Materials. 48(12), pp. 7635-7646. Available: 10.1007/s11664-019-07705-6
- P. Mehrotra. (2016, Jan). Biosensors and their applications-a review. J Oral Biol Craniofac Res 6(2), pp. 153-159 Available: 10.1016/j.jobcr.2015.12.002
- J. T. Smith, S. S. Shah, M. Goryll, J. R. Stowell and D. R. Allee. (2013, Dec). Flexible ISFET biosensor using IGZO metal oxide TFTs and an ITO sensing layer. IEEE Sensors Journal. 14(4), pp. 937-938. Available: 10.1109/JSEN.2013.2295057
- D. Lee and T. Cui. (2010, June). Low-cost, transparent, and flexible single-walled carbon nanotube nanocomposite based ion-sensitive field-effect transistors for pH/glucose sensing. Biosensors and Bioelectronics. 25(10), pp. 2259-2264. Available: 10.1016/j.bios.2010.03.003
- I.-K. Lee, K. H. Lee, S. Lee and W.-J. Cho. (2014, Dec). Microwave annealing effect for highly reliable biosensor: dual-gate ion-sensitive field-effect transistor using amorphous InGaZnO thin-film transistor. ACS applied materials & interfaces. 6(24), pp. 22680-22686. Available: 10.1021/am506805a
- S. Veeralingam and S. Badhulika. (2020, Oct). Surface functionalized β-Bi2O3 nanofibers based flexible, fieldeffect transistor-biosensor (BioFET) for rapid, label-free detection of serotonin in biological fluids. Sensors and Actuators B: Chemical. 321, Available: 10.1016/j.snb.2020.128540
- H. Li, Y. Zhu, M. S. Islam, M. A. Rahman, K. B. Walsh and G. Koley. (2017,Dec). Graphene field effect transistors for highly sensitive and selective detection of K+ ions. Sensors and Actuators B: Chemical. 253, pp. 759-765. Available: doi.org/10.1016/j.snb.2017.06.129
- S. Shah, J. Smith, J. Stowell and J. B. Christen. (2015,Dec). Biosensing platform on a flexible substrate. Sensors and Actuators B: Chemical. 210, pp. 197-203. Available: 10.1016/j.snb.2014.12.075
- M. Medina-Sanchez, C. Martinez-Domingo, E. Ramon and A. Merkoci. (2014,July). An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing. Advanced Functional Materials. 24(40), pp. 6291-6302. Available: 10.1002/adfm.201401180
- Q. Liu, Y. Liu, F. Wu, X. Cao, Z. Li, M. Alharbi, A. N. Abbas, M. R. Amer and C. Zhou. (2018,Jan). Highly sensitive and wearable In2O3 nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids. ACS nano. 12(2), pp. 1170-1178. Available: 10.1021/acsnano.7b06823
- M. Kaisti. (2017,Dec). Detection principles of biological and chemical FET sensors. Biosensors and Bioelectronics. 98, pp. 437-448. Available: 10.1016/j.bios.2017.07.010
- S. Nakata, T. Arie, S. Akita and K. Takei. (2017,Mar). Wearable, flexible, and multifunctional healthcare device with an ISFET chemical sensor for simultaneous sweat pH and skin temperature monitoring. ACS sensors. 2(3), pp. 443-448. Available: 10.1021/acssensors.7b00047
- H.-J. Jang and W.-J. Cho. (2014,June). Performance enhancement of capacitive-coupling dual-gate ion-sensitive field-effect transistor in ultra-thin-body. Scientific reports. 4(pp. 5284. Available: 10.1038/srep05284
- M. Y. Mulla, E. Tuccori, M. Magliulo, G. Lattanzi, G. Palazzo, K. Persaud and L. Torsi. (2015,Jan). Capacitancemodulated transistor detects odorant binding protein chiral interactions. Nature communications. 6(1), pp. 1-9. Available: 10.1038/ncomms7010
- D. Khodagholy, T. Doublet, P. Quilichini, M. Gurfinkel, P. Leleux, A. Ghestem, E. Ismailova, T. Herve, S. Sanaur and C. Bernard. (2013,Mar). In vivo recordings of brain activity using organic transistors. Nature communications. 4(1), pp. 1-7. Available: 10.1038/ncomms2573
- N. Liu, L. Q. Zhu, P. Feng, C. J. Wan, Y. H. Liu, Y. Shi and Q. Wan. (2015,Dec). Flexible sensory platform based on oxide-based neuromorphic transistors. Scientific reports. 5, 18082. Available: 10.1038/srep18082
- R. D. Munje, S. Muthukumar, A. P. Selvam and S. Prasad. (2015,Sep). Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics. Scientific reports. 5, 14586. Available: doi.org/10.1038/srep14586
- L. Xiang, Z. Wang, Z. Liu, S. E. Weigum, Q. Yu and M. Y. Chen. (2016,Dec). Inkjet-printed flexible biosensor based on graphene field effect transistor. IEEE Sensors Journal. 16(23), pp. 8359-8364. Available: 10.1109/JSEN.2016.2608719.
- O. S. Kwon, S. J. Park, J.-Y. Hong, A.-R. Han, J. S. Lee, J. S. Lee, J. H. Oh and J. Jang. (2012,Jan). Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. Acs Nano. 6(2), pp. 1486-1493. Available: 10.1021/nn204395n
- Q. Z. Liu, Y. H. Liu, F. Q. Wu, X. Cao, Z. Li, M. Alharbi, A. N. Abbas, M. R. Amer and C. W. Zhou. (2018, Feb). Highly Sensitive and Wearable In2O3 Nanoribbon Transistor Biosensors with Integrated On-Chip Gate for Glucose Monitoring in Body Fluids. Acs Nano. 12(2), pp. 1170-1178. Available: 10.1021/acsnano.7b06823
- V. D. Bhatt, S. Joshi, M. Becherer and P. Lugli. (2017, May). Flexible, Low-Cost Sensor Based on Electrolyte Gated Carbon Nanotube Field Effect Transistor for OrganoPhosphate Detection. Sensors. 17(5), Available: ARTN 1147. 10.3390/s17051147
- T. Sekitani, T. Yokota, K. Kuribara, M. Kaltenbrunner, T. Fukushima, Y. Inoue, M. Sekino, T. Isoyama, Y. Abe, H. Onodera and T. Someya. (2016, Apr). Ultraflexible organic amplifier with biocompatible gel electrodes. Nature Communications. 7, Available: ARTN 11425. 10.1038/ncomms11425
- J. Viventi, D. H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y. S. Kim, A. E. Avrin, V. R. Tiruvadi, S. W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. L. Xiao, Y. G. Huang, D. Contreras, J. A. Rogers and B. Litt. (2011, Dec). Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nature Neuroscience. 14(12), pp. 1599-1605. Available: 10.1038/nn.2973
- C. F. Lourenco, A. Ledo, J. Laranjinha, G. A. Gerhardt and R. M. Barbosa. (2016, Dec). Microelectrode array biosensor for high-resolution measurements of extracellular glucose in the brain. Sensors and Actuators B-Chemical. 237, pp. 298-307. Available: 10.1016/j.snb.2016.06.083
- M. David-Pur, L. Bareket-Keren, G. Beit-Yaakov, D. RazPrag and Y. Hanein. (2014, Feb). All-carbon-nanotube flexible multi-electrode array for neuronal recording and stimulation. Biomedical Microdevices. 16(1), pp. 43-53. Available: 10.1007/s10544-013-9804-6
- D. W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Q. Ma and J. C. Williams. (2014, Oct). Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nature Communications. 5, Available: ARTN 5258. 10.1038/ncomms6258
- D. C. Rodger, A. J. Fong, L. Wen, H. Ameri, A. K. Ahuja, C. Gutierrez, I. Lavrov, Z. Hui, P. R. Menon, E. Meng, J. W. Burdick, R. R. Roy, V. R. Edgerton, J. D. Weiland, M. S. Humayun and Y. C. Tai. (2008, Jun). Flexible parylenebased multielectrode array technology for high-density neural stimulation and recording. Sensors and Actuators BChemical. 132(2), pp. 449-460. Available: 10.1016/j.snb.2007.10.069
- K. W. Meacham, R. J. Giuly, L. Guo, S. Hochman and S. P. DeWeerth. (2008, Apr). A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord. Biomedical Microdevices. 10(2), pp. 259-269. Available: 10.1007/s10544-007-9132-9
- B. J. Choi, J. H. Kim, W. J. Yang, D. J. Han, J. Park and D. W. Park. (2020, Oct). Parylene-Based Flexible Microelectrode Arrays for the Electrical Recording of Muscles and the Effect of Electrode Size. Applied SciencesBasel. 10(20), Available: ARTN 7364. 10.3390/app10207364
- B. G. Lapatki, J. P. van Dijk, I. E. Jonas, M. J. Zwarts and D. F. Stegeman. (2004, Jan). A thin, flexible multielectrode grid for high-density surface EMG. Journal of Applied Physiology. 96(1), pp. 327-336. Available: 10.1152/japplphysiol.00521.2003
- T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. H. Li, J. Z. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. F. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. G. Huang, F. G. Omenetto, J. A. Rogers and M. R. Bruchas. (2013, Apr). Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics. Science. 340(6129), pp. 211-216. Available: 10.1126/science.1232437
- K. J. Xie, S. M. Zhang, S. R. Dong, S. J. Li, C. N. Yu, K. D. Xu, W. K. Chen, W. Guo, J. K. Luo and Z. H. Wu. (2017, Aug). Portable wireless electrocorticography system with a flexible microelectrodes array for epilepsy treatment. Scientific Reports. 7, Available: ARTN 7808. 10.1038/s41598-017-07823-3
- M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne and D. Ricci. (2017, Jan). Highly Stable Glassy Carbon Interfaces for Long-Term Neural Stimulation and Low-Noise Recording of Brain Activity. Scientific Reports. 7, Available: ARTN 40332. 10.1038/srep40332
- D. W. Park, J. P. Ness, S. K. Brodnick, C. Esquibel, J. Novello, F. Atry, D. H. Baek, H. Kim, J. Bong, K. I. Swanson, A. J. Suminski, K. J. Otto, R. Pashaie, J. C. Williams and Z. Q. Ma. (2018, Jan). Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice. Acs Nano. 12(1), pp. 148-157. Available: 10.1021/acsnano.7b04321
- C. B. Liu, Y. Zhao, X. Cai, Y. Xie, T. Y. Wang, D. L. Cheng, L. Z. Li, R. F. Li, Y. P. Deng, H. Ding, G. Q. Lv, G. L. Zhao, L. Liu, G. S. Zou, M. X. Feng, Q. A. Sun, L. Yin and X. Sheng. (2020, Aug). A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection. Microsystems & Nanoengineering. 6(1), Available: ARTN 64. 10.1038/s41378-020-0176-9
- L. Etemadi, M. Mohammed, P. T. Thorbergsson, J. Ekstrand, A. Friberg, M. Granmo, L. M. E. Pettersson and J. Schouenborg. (2016, May). Embedded Ultrathin Cluster Electrodes for Long-Term Recordings in Deep Brain Centers. Plos One. 11(5), Available: ARTN e0155109. 10.1371/journal.pone.0155109
- Y. C. Zhang, N. Zheng, Y. Cao, F. L. Wang, P. Wang, Y. J. Ma, B. W. Lu, G. H. Hou, Z. Z. Fang, Z. W. Liang, M. K. Yue, Y. Li, Y. Chen, J. Fu, J. Wu, T. Xie and X. Feng. (2019, Apr). Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Science Advances. 5(4), Available: ARTN eaaw1066. 10.1126/sciadv.aaw1066
- K. I. Song, S. E. Park, S. Lee, H. Kim, S. H. Lee and I. Youn. (2018, Oct). Compact Optical Nerve Cuff Electrode for Simultaneous Neural Activity Monitoring and Optogenetic Stimulation of Peripheral Nerves. Scientific Reports. 8, Available: ARTN 15630. 10.1038/s41598-018-33695-2
- C. L. Kolarcik, S. D. Luebben, S. A. Sapp, J. Hanner, N. Snyder, T. D. Y. Kozai, E. Chang, J. A. Nabity, S. T. Nabity, C. F. Lagenaur and X. T. Cui. (2015, Elastomeric and soft conducting microwires for implantable neural interfaces. Soft Matter. 11(24), pp. 4847-4861. Available: 10.1039/c5sm00174a
- F. Ejserholm, A. Vastesson, T. Haraldsson, W. van der Wijngaart, J. Schouenborg, L. Wallman and M. Bengtsson. (2013, A polymer neural probe with tunable flexibility. 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER). Available: 10.1109/NER.2013.6696028.
- H. Shin, Y. Son, U. Chae, J. Kim, N. Choi, H. J. Lee, J. Woo, Y. Cho, S. H. Yang, C. J. Lee and I. J. Cho. (2019, Aug). Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo. Nature Communications. 10(pp. Available: ARTN 3777 10.1038/s41467-019-11628-5
- J. T. W. Kuo, B. J. Kim, S. A. Hara, C. D. Lee, C. A. Gutierrez, T. Q. Hoang and E. Meng. (2013,Nov). Novel flexible Parylene neural probe with 3D sheath structure for enhancing tissue integration. Lab on a Chip. 13(4), pp. 554-561. Available: 10.1039/c2lc40935f
- B. Fan, C. A. Rusinek, C. H. Thompson, M. Setien, Y. Guo, R. Rechenberg, Y. Gong, A. J. Weber, M. F. Becker, E. Purcell and W. Li. (2020, Jul). Flexible, diamond-based microelectrodes fabricated using the diamond growth side for neural sensing. Microsystems & Nanoengineering. 6(1), Available: ARTN 42 10.1038/s41378-020-0155-1
- S. Tamaki, T. Kuki, T. Matsunaga, H. Mushiake, Y. Furusawa and Y. Haga. (2015, Aug). Flexible Tube-Shaped Neural Probe for Recording and Optical Stimulation of Neurons at Arbitrary Depths. Sensors and Materials. 27(7), pp. 507-523. Available: 10.18494/SAM.2015.1095
- Z. L. Xiang, J. Q. Liu and C. Lee. (2016, May). A flexible three-dimensional electrode mesh: An enabling technology for wireless brain-computer interface prostheses. Microsystems & Nanoengineering. 2, Available: ARTN 16012. 10.1038/micronano.2016.12
- C. Lu, S. Park, T. J. Richner, A. Derry, I. Brown, C. Hou, S. Y. Rao, J. Kang, C. T. Moritz, Y. Fink and P. Anikeeva. (2017, Mar). Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Science Advances. 3(3), Available: ARTN e1600955. 10.1126/sciadv.1600955
- H. Toda, T. Suzuki, H. Sawahata, K. Majima, Y. Kamitani and I. Hasegawa. (2011, Jan). Simultaneous recording of ECoG and intracortical neuronal activity using a flexible multichannel electrode-mesh in visual cortex. Neuroimage. 54(1), pp. 203-212. Available: 10.1016/j.neuroimage.2010.08.003
- X. L. Wei, L. Luan, Z. T. Zhao, X. Li, H. L. Zhu, O. Potnis and C. Xie. (2018, Jun). Nanofabricated Ultraflexible Electrode Arrays for High-Density Intracortical Recording. Advanced Science. 5(6), Available: ARTN 1700625. 10.1002/advs.201700625
- Y. C. Lu, H. M. Lyu, A. G. Richardson, T. H. Lucas and D. Kuzum. (2016, Sep). Flexible Neural Electrode Array Basedon Porous Graphene for Cortical Microstimulation and Sensing. Scientific Reports. 6, Available: ARTN 33526. 10.1038/srep33526
- M. Ryu, J. H. Yang, Y. Ahn, M. Sim, K. H. Lee, K. Kim, T. Lee, S. J. Yoo, S. Y. Kim, C. Moon, M. Je, J. W. Choi, Y. Lee and J. E. Jang. (2017, Mar). Enhancement of Interface Characteristics of Neural Probe Based on Graphene, ZnO Nanowires, and Conducting Polymer PEDOT. Acs Applied Materials & Interfaces. 9(12), pp. 10577-10586. Available: 10.1021/acsami.7b02975
- A. Oliveira, J. S. Ordonez, D. A. Vajari, M. Eickenscheidt and T. Stieglitz. (2016,Jun). Laser-induced carbon pyrolysis of electrodes for neural interface systems. European Journal of Translational Myology. 26(3), pp. 181-186. Available: 10.4081/ejtm.2016.6062