DOI QR코드

DOI QR Code

Vanadium계 촉매의 NH3-SCR 저온 활성 영향 연구

A Study on the Effect of Low-Temperature Activity on Vanadium Catalysts

  • 여종현 (경기대학교 일반대학원 환경에너지공학과) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Yeo, Jonghyeon (Department of Environmental Energy Engineering, Graduate school of Kyonggi University) ;
  • Hong, Sungchang (Department of Environmental Energy Engineering, Kyonggi University)
  • 투고 : 2020.11.19
  • 심사 : 2020.12.08
  • 발행 : 2020.12.31

초록

본 실험은 상용 촉매인 V/W/TiO2와 V/Mo/TiO2 촉매를 비교하여 SCR 반응에서 저온 활성에 미치는 영향 연구를 진행하였다. NH3-SCR 반응에서의 중요한 영향을 미치는 NH3 산점과 산소의 영향을 확인하기 위해 NH3-TPD, DRIFT, H2-TPR 분석과 O2-on/off 실험을 진행하였다. 반응 활성이 높은 온도인 250 ℃와 활성 저하가 크게 나타나는 180 ℃에서 반응 활성에 미치는 영향을 분석하였다. 250 ℃에서는 SCR 반응에 참여하는 NH3 중, B산점과 L산점이 반응에 참여하는 것을 확인할 수 있었으며, 기상의 산소가 반응에 참여하여 재산화 영향에 크게 나타내는 것을 확인할 수 있었다. 하지만 180 ℃에서는 B산점의 영향이 저하되고, 기상의 산소에 의한 재산화의 영향이 적어 활성이 저하되는 것으로 판단된다.

This experiment compared V/W/TiO2 and V/Mo/TiO2 catalysts that were used for commercial catalysts. The effects of SCR reactions on low-temperature activity were studied. NH3-TPD, DRIFT, and H2-TPR analysis, alongside O2-on/off experiments, were conducted to identify the effects of NH3 acid sites and oxygen participating in the SCR reaction, which had a significant impact on the NH3-SCR reaction. The effect on activity was analyzed at 250 ℃, a high temperature of reaction activity, and 180 ℃, which showed significant activity degradation. In NH3 involved in the SCR reaction at 250 ℃, B and L acid sites contributed to the reaction. In particular, the B acid site was found to have significantly participated in the reaction and affected the NH3-SCR activity, which was reduced at 180 ℃ to affect the activity degradation. Also, atmospheric oxygen contributed to the SCR reaction, causing the active property to facilitate reaction activity at 250 ℃. However, oxygen did not comprise the reaction at 180 ℃, indicating a drop inactivity. Therefore, the B acid site was reduced, and the activity was judged to be degraded due to failure to share in the reaction and low effects by atmospheric oxygen.

키워드

참고문헌

  1. Shelef, M., "Selective Catalytic Reduction of NOx with N-free Reductants," Chem. Rev., 95(1), 209-225 (1995). https://doi.org/10.1021/cr00033a008
  2. Parvulescu, V. I., Grange, P., and Delmon, B., "Catalytic Removal of No," Catal. Today, 46(4), 233-316 (1998). https://doi.org/10.1016/S0920-5861(98)00399-X
  3. Park, S.-U., and Lee, Y.-H., "Spatial Distribution of Wet Deposition of Nitrogen in South Korea," Atmos. Environ., 36(4), 619-628 (2002). https://doi.org/10.1016/S1352-2310(01)00489-7
  4. Casagrande, L., Lietti, L., Nova, I., Forzatti, P., and Baiker, A., "SCR of NO by NH3 over TiO2-supported V2O5-MoO3 Catalysts: Reactivity and Redox Behavior," Appl. Catal. B: Environ., 22(1), 63-77 (1999). https://doi.org/10.1016/S0926-3373(99)00035-1
  5. Komatsubara, Y., Ida, S., and Fujitsu, H., "Catalytic Activity of PAN-based Active Carbon Fibre (Pan-Acf) Activated with Sulphuric Acid for Reduction of Nitric Oxide with Ammonia," Fuel, 63(12), 1738-1742 (1984). https://doi.org/10.1016/0016-2361(84)90110-8
  6. Kusakabe, K., Kashima, M., Morooka, S., and Kato, Y., "Rate of Reduction of Nitric Oxide with Ammonia on Coke Catalysts Activated with Suphuric Acid," Fuel, 67(5), 714-718 (1988). https://doi.org/10.1016/0016-2361(88)90304-3
  7. Forzatti, P., "Present Status and Perspectives in de-NOx SCR Catalysis," Appl. Catal. A: Gen., 222(1-2), 221-236 (2001). https://doi.org/10.1016/S0926-860X(01)00832-8
  8. Hong, S., Lee, Y., and Jeong, S., "A Study on the Economic Analysis of Low-temperature SCR Technology for NOx Reduction by Scenarios," J. Energy Eng., 29(2), 10-22 (2020). https://doi.org/10.5855/ENERGY.2020.29.2.010
  9. Rehder, D., "Transport, Accumulation, and Physiological Effects of Vanadium," Detoxidication of Heavy metals, 30, 205-220 (2011). https://doi.org/10.1007/978-3-642-21408-0_11
  10. Matralis, H. K., Papadopoulou, C., Kordulis, C., Elguezabal, A. A., and Corberan, V. C., "Selective Oxidation of Toluene over V2O5/TiO2 Catalysts. Effect of Vanadium Loading and of Molybdenum Addition on the Catalytic Properties," Appl. Catal. A: Gen., 126(2), 365-380 (1995). https://doi.org/10.1016/0926-860X(95)00029-1
  11. Nova, I., Lietti, L., Casagrande, L., Dall' Acqua, L., Giamello, E., and Forzatti, P., "Characterization and Reactivity of TiO2-supported MoO3 De-Nox SCR Catalysts," Appl. Catal. B: Environ., 17(3), 245-258 (1998). https://doi.org/10.1016/S0926-3373(98)00015-0
  12. Hu, S., and Apple, T. M., "15N NMR Study of the Adsorption of NO and NH3 on Titania-Supported Vanadia Catalysts," J. Catal., 158(1), 199-204 (1996). https://doi.org/10.1006/jcat.1996.0019
  13. Lietti, L., Alemany, J. L., Forzatti, P., Busca, G., Ramis, G., Giamello E., and Bregani, F., "Reactivity of V2O5-WO3-TiO2 catalysts in the selective catalytic reduction of nitric oxide by ammonia," Catal. Today, 29(1-4), 143-148 (1996). https://doi.org/10.1016/0920-5861(95)00250-2
  14. Zhu, M., Lai, J. K., Tumuluri, U., Wu, Z., and Wachs, I. E., "Nature of Active Sites and Surface Intermediates during SCR of NO with NH3 by Supported V2O5-WO3-TiO2 Catalysts," J. Am. Chem. Soc., 139(44), 15624-15627 (2017). https://doi.org/10.1021/jacs.7b09646
  15. Topsoe, N. Y., Anstrom, M., and Dumesic, J. A., "Raman, FT-IR and Theoretical Evidence for Dynamic Structural Rearrangements of Vanadia/titania DeNOx Catalysts," Catal. Lett., 76(1-2), 11-20 (2001). https://doi.org/10.1023/A:1016715823630
  16. Vargas, M. A. L., Casanova, M., Trovarelli, A., and Busca, G., "An IR Study of Thermally Stable V2O5-WO3-TiO2 SCR Catalysts Modified with Silica and Rare-earth(Ce, Tb, Er)," Appl. Catal. B: Environ., 75(3-4), 303-311 (2007). https://doi.org/10.1016/j.apcatb.2007.04.022
  17. Lietti, L., Ramis, G., Berti, F., Toledo, G., Robba, D., Busca, G., and Forzatti, P., "Cheminal, Structural and Mechanistic Aspects on NOx SCR over Commercial and Model Oxide Catalysts," Catal. Today, 42(1-2), 101-116 (1998). https://doi.org/10.1016/S0920-5861(98)00081-9
  18. Bosch, H., and Janssen, F., Catalytic Reduction of Nitrogen Oxides: A Review on the Fundamentals and Technology, Amsterdam, The Netherlands: Elsevier, 7, 369 (1988).