DOI QR코드

DOI QR Code

ON THE UNIQUENESS OF CERTAIN TYPE OF SHIFT POLYNOMIALS SHARING A SMALL FUNCTION

  • Saha, Biswajit (Department of Mathematics Govt. General Degree College Muragachha)
  • Received : 2020.09.29
  • Accepted : 2020.10.28
  • Published : 2020.12.30

Abstract

In this article, we consider the uniqueness problem of the shift polynomials $f^n(z)(f^m(z)-1){\prod\limits_{j=1}^{s}}f(z+c_j)^{{\mu}_j}$ and $f^n(z)(f(z)-1)^m{\prod\limits_{j=1}^{s}}f(z+c_j)^{{\mu}_j}$, where f(z) is a transcendental entire function of finite order, cj (j = 1, 2, …, s) are distinct finite complex numbers and n(≥ 1), m(≥ 1), s and µj (j = 1, 2, …, s) are integers. With the concept of weakly weighted sharing and relaxed weighted sharing we obtain some results which extend and generalize some results due to P. Sahoo [Commun. Math. Stat. 3 (2015), 227-238].

Keywords

Acknowledgement

The author is grateful to the referees for reading the manuscript carefully and making a number of valuable comments and suggestions for the improvement of the paper.

References

  1. A. Banerjee and S. Mukherjee, Uniqueness of meromorphic functions concerning differential monomials sharing the same value, Bull. Math. Soc. Sci. 50 (2007), 191-206.
  2. M.R. Chen and Z.X. Chen, Properties of difference polynomials of entire functions with finite order, Chinese Ann. Math. Ser. A 33 (2012), 359-374. https://doi.org/10.3969/j.issn.1000-8314.2012.03.010
  3. Y.M. Chiang and S.J. Feng, On the Nevanlinna characteristic of f(z + η) and difference equations in the complex plane, Ramanujan J. 16 (2008), 105-129. https://doi.org/10.1007/s11139-007-9101-1
  4. R.G. Halburd and R.J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math. 31 (2006), 463-478.
  5. R.G. Halburd and R.J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with application to difference equations, J. Math. Anal. Appl. 314 (2006), 477-487. https://doi.org/10.1016/j.jmaa.2005.04.010
  6. W.K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs Clarendon Press, Oxford 1964.
  7. I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin/Newyork, 1993.
  8. I. Laine and C.C. Yang, Value distribution of difference polynomials, Proc. Japan Acad. SerA Math. Sci. 83 (2007), 148-151.
  9. S.H. Lin and W.C. Lin, Uniqueness of meromorphic functions concerning weakly weighted sharing, Kodai Math. J. 29 (2006), 269-280. https://doi.org/10.2996/kmj/1151936441
  10. X.Q. Lin and W.C. Lin, Uniqueness of entire functions sharing one value, Acta Math. Sci., Ser. B. Engl. Ed. 31 (2011), 1062-1076.
  11. X. Luo and W.C. Lin, Value sharing results for shifts of meromorphic functions, J. Math. Anal. Appl. 377 (2011), 441-449. https://doi.org/10.1016/j.jmaa.2010.10.055
  12. C. Meng, Uniqueness of entire functions concerning difference polynomials, Math. Bohem. 139 (2014), 89-97. https://doi.org/10.21136/MB.2014.143638
  13. X.G. Qi, L.Z. Yang and K. Liu, Uniqueness and periodicity of meromorphic functions concerning the difference operator, Comput. Math. Appl. 60 (2010), 1739-1746. https://doi.org/10.1016/j.camwa.2010.07.004
  14. P. Sahoo, Uniqueness of entire functions related to difference polynomials, Commun. Math. Stat. 3 (2015), 227-238. https://doi.org/10.1007/s40304-015-0057-y
  15. H.X. Yi, Meromorphic functions that share one or two values, Complex Var. Theory Appl. 28 (1995), 1-11. https://doi.org/10.1080/17476939508814833
  16. H.X. Yi and C.C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995.
  17. J.L. Zhang, Value distribution and shared sets of differences of meromorphic functions, J. Math. Anal. Appl. 367 (2010), 401-408. https://doi.org/10.1016/j.jmaa.2010.01.038

Cited by

  1. Weakly weighted sharing and unicity of certain shift polynomials vol.1978, pp.1, 2020, https://doi.org/10.1088/1742-6596/1978/1/012037