참고문헌
- A. Basari, C. Murathan, On generalised 𝜙- reccurent Kenmotsu manifolds, SDU Fen Dergisi 3 (1) (2008), 91-97.
- K. K. Baishya & P. R. Chowdhury, On generalized quasi-conformal N(κ, μ)-manifolds, Commun. Korean Math. Soc., 31 (1) (2016), 163-176. https://doi.org/10.4134/CKMS.2016.31.1.163
- A. Biswas and K.K. Baishya, Study on generalized pseudo (Ricci) symmetric Sasakian manifold admitting general connection, Bulletin of the Transilvania University of Brasov, 12 (2) (2019), https://doi.org/10.31926/but.mif.2019.12.61.2.4.
- A. Biswas and K.K. Baishya, A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds, Scientific Studies and Research Series Mathematics and Informatics, 29 (1) (2019).
- A. Biswas, S. Das and K.K. Baishya,On Sasakian manifolds satisfying curva-ture restrictions with respect to quarter symmetric metric connection, Scientific Studies and Research Series Mathematics and Informatics, 28 (1) (2018), 29-40.
- D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser, Boston, 2002.
- A. M. Blaga, 𝜂-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat 30 (2) (2016), 489-496. https://doi.org/10.2298/FIL1602489B
- K.Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies, Princeton University Press,32 (1953).
- K. K. Baishya and P. R. Chowdhury, η-Ricci solitons in (LCS)n-manifolds, Bull. Transilv. Univ. Brasov, 58 (2) (2016), 1-12.
- L. P.Eisenhart, Riemannian Geometry, Princeton University Press, (1949).
- Golab, S., On semi-symmetric and quarter-symmetric linear connections, Tensor(N.S.) 29 (1975), 249-254.
- Y.Ishii, On conharmonic transformations, Tensor (N.S.),7 (1957), 73-80.
- J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. 61 (2) (2009), 205-212. https://doi.org/10.2748/tmj/1245849443
- K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972), 93-103. https://doi.org/10.2748/tmj/1178241594
- K. K. Baishya, More on η-Ricci solitons in (LCS)n-manifolds, Bulletin of the Transilvania University of Brasov, Series III, Maths, Informatics, Physics., 60 (1), (2018), 1-10
- K. K. Baishya, Ricci Solitons in Sasakian manifold, Afr. Mat. 28 (2017), 1061-1066, DOI: 10.1007/s13370-017-0502-z.
- K. K. Baishya, P. R. Chowdhury, M. Josef and P. Peska, On almost generalized weakly symmetric Kenmotsu manifolds, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 55 (2) (2016), 5-15.
- D. G. Prakasha and B. S. Hadimani, η-Ricci solitons on para-Sasakian manifolds, J. Geom. 108 (2017), 383-392. https://doi.org/10.1007/s00022-016-0345-z
- G. Perelman, The entropy formula for the Ricci flow and its geometric applications, http://arXiv.org/abs/math/0211159, (2002), 1-39.
- G. Perelman, Ricci flow with surgery on three manifolds, http://arXiv.org/abs/math/0303109, (2003), 1-22.
- G.P. Pokhariyal and R.S. Mishra, Curvature tensors and their relativistic significance, Yokohama Math. J. 18 (1970), 105-108.
- G.P. Pokhariyal and R.S. Mishra, Curvature tensors and their relativistic significance II, Yokohama Math. J. 19 (2) (1971), 97-103.
- R. Sharma, Certain results on κ-contact and (κ,µ)-contact manifolds, J. Geom. 89 (2008), 138-147. https://doi.org/10.1007/s00022-008-2004-5
- R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, Contemp. Math., American Math. Soc., 71 (1988), 237-262. https://doi.org/10.1090/conm/071/954419
- S. Deshmukh, H. Alodan and H. Al-Sodais, A note on Ricci solitons, Balkan J. Geom. Appl. 16 (2011), 48-55.
- Schouten, J. A. and Van Kampen, E. R., Zur Einbettungs-und Krummungstheorie nichtholonomer, Gebilde Math. Ann. 103 (1930), 752-783. https://doi.org/10.1007/BF01455718
- S. M. Webster, h Pseudo hermitian structures on a real hypersurface, J. Differ. Geom. 13 (1978), 25-41. https://doi.org/10.4310/jdg/1214434345
- S. Eyasmin, P. Roy Chowdhury and K. K. Baishya, η-Ricci solitons in Kenmotsu manifolds, Honam Mathematical J 40 (2) (2018), 383-392.
- S. Tanno, The automorphism groups of almost contact Riemannian manifold, Tohoku Math. J. 21 (1969), 21-38. https://doi.org/10.2748/tmj/1178243031
- V. F. Kirichenko, On the geometry of Kenmotsu manifolds, Dokl. Akad. Nauk, Ross. Akad. Nauk 380 (2001), 585-587.
- Yano, K. and Imai T., Quarter-symmetric metric connections and their curvature tensors, Tensor (N.S.) 38 (1982), 13-18.
- Yano, K., On semi-symmetric connection. Revue Roumanie de Mathematiques Pures et appliquees, 15(1970), 1579-1586.
- S. Zamkovoy, Canonical connections on paracontact manifolds. Ann. Global Anal. Geom. 36 (1) (2008), 37-60. https://doi.org/10.1007/s10455-008-9147-3