References
- Barros, A., Batista, R. and Ribeiro Jr., E., Compact almost Ricci solitons with constant scalar curvature are gradient, Monatsh. Math., DOI 10.1007/s00605-013-0581-3.
- Barros, A., and Ribeiro Jr., E., Some characterizations for Compact almost Ricci solitons, Proc. Amer. Math. Soc. 140 (2012),1033-1040. https://doi.org/10.1090/S0002-9939-2011-11029-3
- Blaga, A.M., Some Geometrical Aspects of Einstein, Ricci and Yamabe solitons, J. Geom. symmetry Phys. 52 (2019), 17-26. https://doi.org/10.7546/jgsp-52-2019-17-26
- Blaga, A.M., η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl. 20 (2015), 1-13.
- Cappelletti-Montano, B., Erken, I.K. and Murathan, C., Nullity conditions in paracontact geometry, Differ. Geom. Appl. 30 (2012), 665-693. https://doi.org/10.1016/j.difgeo.2012.09.006
- Deshmukh, S., Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci. Math. Roumanie 55 (103) (2012), 41-50.
- Deshmukh, S., Alodan, H. and Al-Sodais, H., A Note on Ricci Soliton, Balkan J. Geom. Appl. 16 (2011), 48-55.
- Duggal, K. L., Almost Ricci Solitons and Physical Applications, Int. El. J. Geom., 2 (2017), 1-10.
- Duggal, K. L., A New Class of Almost Ricci Solitons and Their Physical Interpretation, Hindawi Pub. Cor. Int. S. Res. Not., Volume 2016, Art. ID 4903520, 6 pages.
- Hamilton, R. S., The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math. 71, American Math. Soc., 1988. https://doi.org/10.1090/conm/071/954419
- Erken, I.K. and Murathan, C., A complete study of three-dimensional paracontact (κ, µ, ν)-spaces, Int. J.Geom. Methods Mod. Phys. (2017). https://doi.org/10.1142/S0219887817501067.
- Erken, I.K., Yamabe solitons on three-dimensional normal almost paracontact metric manifolds, Periodica Mathematica Hungarica https://doi.org/10.1007/s10998-019-00303-3.
- Ivey, T., Ricci solitons on compact 3-manifolds, Diff. Geom. Appl. 3 (1993), 301-307. https://doi.org/10.1016/0926-2245(93)90008-O
- Kaneyuki, S. and Williams, F.L., Almost paracontact and parahodge structures on manifolds, Nagoya Math. J. 99 (1985), 173-187. https://doi.org/10.1017/S0027763000021565
- Pigola, S., Rigoli, M., Rimoldi, M. and Setti, A., Ricci almost solitons, Ann. Sc. Norm. Super. Pisa Cl. Sci. 10(2011), 757-799.
- Sato, I., On a structure similar to the almost contact structure, Tensor (N.S.) 30(1976), 219-224.
- Sharma, R., Almost Ricci solitons and K-contact geometry, Monatsh Math. 175 (2014), 621-628. https://doi.org/10.1007/s00605-014-0657-8
- Turan, M., De, U. C. and Yildiz, A., Ricci solitons and gradient Ricci solitons in three-dimensional trans-sasakian manifolds, Filomat 26 (2012), 363-370. https://doi.org/10.2298/FIL1202363T
- Yano, K., Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.
- Yildiz, A., De, U. C. and Turan, M., On 3-dimensional f-Kenmotsu manifolds and Ricci solitons, Ukrainian Math.J. 65 (2013), 684-693. https://doi.org/10.1007/s11253-013-0806-6