DOI QR코드

DOI QR Code

A NOTE ON ALMOST RICCI SOLITON AND GRADIENT ALMOST RICCI SOLITON ON PARA-SASAKIAN MANIFOLDS

  • Received : 2020.05.06
  • Accepted : 2020.11.30
  • Published : 2020.12.30

Abstract

The object of the offering exposition is to study almost Ricci soliton and gradient almost Ricci soliton in 3-dimensional para-Sasakian manifolds. At first, it is shown that if (g, V, λ) be an almost Ricci soliton on a 3-dimensional para-Sasakian manifold M, then it reduces to a Ricci soliton and the soliton is expanding for λ=-2. Besides these, in this section, we prove that if V is pointwise collinear with ξ, then V is a constant multiple of ξ and the manifold is of constant sectional curvature -1. Moreover, it is proved that if a 3-dimensional para-Sasakian manifold admits gradient almost Ricci soliton under certain conditions then either the manifold is of constant sectional curvature -1 or it reduces to a gradient Ricci soliton. Finally, we consider an example to justify some results of our paper.

Keywords

References

  1. Barros, A., Batista, R. and Ribeiro Jr., E., Compact almost Ricci solitons with constant scalar curvature are gradient, Monatsh. Math., DOI 10.1007/s00605-013-0581-3.
  2. Barros, A., and Ribeiro Jr., E., Some characterizations for Compact almost Ricci solitons, Proc. Amer. Math. Soc. 140 (2012),1033-1040. https://doi.org/10.1090/S0002-9939-2011-11029-3
  3. Blaga, A.M., Some Geometrical Aspects of Einstein, Ricci and Yamabe solitons, J. Geom. symmetry Phys. 52 (2019), 17-26. https://doi.org/10.7546/jgsp-52-2019-17-26
  4. Blaga, A.M., η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl. 20 (2015), 1-13.
  5. Cappelletti-Montano, B., Erken, I.K. and Murathan, C., Nullity conditions in paracontact geometry, Differ. Geom. Appl. 30 (2012), 665-693. https://doi.org/10.1016/j.difgeo.2012.09.006
  6. Deshmukh, S., Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci. Math. Roumanie 55 (103) (2012), 41-50.
  7. Deshmukh, S., Alodan, H. and Al-Sodais, H., A Note on Ricci Soliton, Balkan J. Geom. Appl. 16 (2011), 48-55.
  8. Duggal, K. L., Almost Ricci Solitons and Physical Applications, Int. El. J. Geom., 2 (2017), 1-10.
  9. Duggal, K. L., A New Class of Almost Ricci Solitons and Their Physical Interpretation, Hindawi Pub. Cor. Int. S. Res. Not., Volume 2016, Art. ID 4903520, 6 pages.
  10. Hamilton, R. S., The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math. 71, American Math. Soc., 1988. https://doi.org/10.1090/conm/071/954419
  11. Erken, I.K. and Murathan, C., A complete study of three-dimensional paracontact (κ, µ, ν)-spaces, Int. J.Geom. Methods Mod. Phys. (2017). https://doi.org/10.1142/S0219887817501067.
  12. Erken, I.K., Yamabe solitons on three-dimensional normal almost paracontact metric manifolds, Periodica Mathematica Hungarica https://doi.org/10.1007/s10998-019-00303-3.
  13. Ivey, T., Ricci solitons on compact 3-manifolds, Diff. Geom. Appl. 3 (1993), 301-307. https://doi.org/10.1016/0926-2245(93)90008-O
  14. Kaneyuki, S. and Williams, F.L., Almost paracontact and parahodge structures on manifolds, Nagoya Math. J. 99 (1985), 173-187. https://doi.org/10.1017/S0027763000021565
  15. Pigola, S., Rigoli, M., Rimoldi, M. and Setti, A., Ricci almost solitons, Ann. Sc. Norm. Super. Pisa Cl. Sci. 10(2011), 757-799.
  16. Sato, I., On a structure similar to the almost contact structure, Tensor (N.S.) 30(1976), 219-224.
  17. Sharma, R., Almost Ricci solitons and K-contact geometry, Monatsh Math. 175 (2014), 621-628. https://doi.org/10.1007/s00605-014-0657-8
  18. Turan, M., De, U. C. and Yildiz, A., Ricci solitons and gradient Ricci solitons in three-dimensional trans-sasakian manifolds, Filomat 26 (2012), 363-370. https://doi.org/10.2298/FIL1202363T
  19. Yano, K., Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.
  20. Yildiz, A., De, U. C. and Turan, M., On 3-dimensional f-Kenmotsu manifolds and Ricci solitons, Ukrainian Math.J. 65 (2013), 684-693. https://doi.org/10.1007/s11253-013-0806-6