DOI QR코드

DOI QR Code

Evaluation the Feed Value of Whole Crop Rice Silage and Comparison of Rumen Fermentation according to Its Ratio

신규 조사료원 사료용 벼 사일리지의 사료가치 평가 및 급여 비율에 따른 반추위 발효성상 비교

  • Park, Seol Hwa (Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration) ;
  • Baek, Youl Chang (Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Seul (Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Byeong Hyeon (Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration) ;
  • Ryu, Chae Hwa (Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration)
  • 박설화 (농촌진흥청 국립축산과학원 영양생리팀) ;
  • 백열창 (농촌진흥청 국립축산과학원 영양생리팀) ;
  • 이슬 (농촌진흥청 국립축산과학원 영양생리팀) ;
  • 김병현 (농촌진흥청 국립축산과학원 영양생리팀) ;
  • 류채화 (농촌진흥청 국립축산과학원 영양생리팀)
  • Received : 2020.10.23
  • Accepted : 2020.11.26
  • Published : 2020.12.31

Abstract

This study was to evaluate the feed value of whole crop rice silage (WCRS) and to investigate a suitable ratio of the WCRS and concentrate by an analysis of rumen fermentation. A total of 6 treatments were used according to WCRS: concentrate ratio on in vitro rumen fermentation: T1 (100:0), T2 (60:40), T3 (40:60), T4 (20:80), T5 (10:90), and T6 (0:100). The ruminal pH, total gas emission, ammonia nitrogen, and volatile fatty acid (VFA) were determined as fermentation parameters. Total nutrients digestibility trial was conducted by 4 treatments according to WCRS: concentrate ratio at 40:60 (W40), 20:80 (W20), and 10:90 (W10), respectively. Feed value was analyzed according to AOAC (2019) and nutrient digestibility was calculated based on NRC (2001). The levels of crude protein (CP), crude fat, and neutral detergent fiber of the WCRS were 12.29%, 1.67%, and 59.79%, respectively. It was found to be 51.49% as a result of predicting the total digestible nutrient of WCRS using the NRC (2001) model. In vitro rumen fermentation, T4, T5, and T6 treatments showed a greater gas emission and total VFA concentration compared with other treatments (p<0.05). Acetate and acetate to propionate ratio of T4, T5, and T6 were significantly higher than other treatments (p<0.05). There was a significant difference in the level of propionate and butyrate according to the WCRS: concentrate ratio (p<0.05). The digestibility of dry matter and CP was significantly lower in W40 than in other treatments (p<0.05); however, there was no difference in W20 and W10. In conclusion, the 20:80 (WCRS: concentrate) is beneficial for stabilizing the rumen that does not inhibit rumen fermentation and nutrient digestion. This ratio might have a positive effect on the economics of farms as a valuable feed.

본 연구는 사료용 벼 사일리지의 사료가치를 평가하고 반추위 발효성상을 이용하여 사료용 벼 사일리지와 배합사료의 적정 비율을 조사하고자 하였다. 사료가치 평가는 AOAC(2019)에 따라 분석하였고, 영양소 소화율 예측은 NRC(2001)의 수식을 기반으로 산출하였다. In vitro 반추위 발효시험은 총 6개의 시험구로 구성되었고, 반추위 pH, 가스생성량, 암모니아태 질소 및 휘발성 지방산을 측정하였다:T1(100:0), T2(60:40), T3(40:60), T4(20:80), T5(10:90), T6(0:100). 영양소 소화율 시험에서는 사료용 벼 사일리지 비율에 따라 40:60(W40), 20:80(W20) 및 10:90(W10)로 나누어 수행하였다. 사료용 벼 사일리지의 조단백질, 조지방 및 NDF 함량은 각각 12.29%, 1.67%, 59.79%로 측정되었다. 또한 NRC(2001)을 이용한 사료용 벼 사일리지의 TDN 예측 결과는 51.49%로 나타났다. 반추위 발효 in vitro 결과, 가스생성량과 총 휘발성 지방산생성량은 T4, T5 및 T6에서 다른 시험구보다 유의적으로 높았다(p<0.05). 초산과 AP ratio도 T4, T5 및 T6에서 유의적으로 높게 나타났다(p<0.05). 프로피온산 및 낙산에서는 사료용 벼 사일리지와 배합사료의 비율의 변화에 따라 유의적인 차이를 보였다(p<0.05). 건물 및 조단백 소화율은 W40에서 유의적으로 낮은 결과를 보였으나(p<0.05), W20 및 W10은 유의적 차이가 없었다. 따라서 사료용 벼 사일리지는 사료로서 가치가 있다고 판단된다. 또한, 사료용 벼 사일리지와 배합사료의 급여비율을 20:80하는 것이 반추위 발효 및 영양소 소화를 저해하지 않는 수준에서 농가의 경제성에도 긍정적일 것으로 생각된다.

Keywords

References

  1. Abrams, S. 1988. Sources of error in predicting digestible dry matter from the acid-detergent fiber content of forages. Animal Feed Science and Technology. 21(2): 205-208. https://doi.org/10.1016/0377-8401(88)90102-2
  2. AOAC. 2019. Official methods of analysis, 21st edition (2019) - AOAC International. https://www.aoac.org/official-methods-ofanalysis-21st-edition-2019/
  3. BCNRM. 2016. Beef cattle nutrient requirements model. National Academy Press. Washington, DC. p355
  4. Boucher, S. E., Calsamiglia, S., Parsons, C. M., Stein, H. H., Stern, M. D., Erickson, P. S., Utterback, P. L. and Schwab, C. G. 2009. Intestinal digestibility of amino acids in rumen-undegraded protein estimated using a precision-fed cecectomized rooster bioassay: II. Distillers dried grains with solubles and fish meal. Journal of Dairy Science. 92(12): 6056-6067 https://doi.org/10.3168/jds.2008-1885
  5. Chaney, A. L. and Marbach, E. P. 1962. Modified reagents for determination of urea and ammonia. Clinical Chemistry. 8(2): 130-132. https://doi.org/10.1093/clinchem/8.2.130
  6. Choi, C. W., Chung, E. S., Hong, S. K., Oh, Y. K., Kim, J. G. and Lee, S. C. 2010. Feed evaluation of whole crop rice silage harvested at different mature stages in Hanwoo steers using in situ technique. Journal of the Korea Society of Grassland and Forage Science. 30(2): 143-150. https://doi.org/10.5333/KGFS.2010.30.2.143
  7. David T. M., Oh, S. J., Lee, A. R., Chae, J. I., Choi, C. W. and Choi, N. J. 2012. In vitro rumen fermentation patterns of environment friendly whole crop barley, italian ryegrass and rice straw silages. Korean Journal of Organic Agriculture. 20(2): 221-230
  8. Erwin, E. S., Marco, G. J. and Emery, E. M. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. Journal of Dairy Science. 44: 1768-1771. https://doi.org/10.3168/jds.s0022-0302(61)89956-6
  9. Fonnesbeck, P. V., Wardeh, M. F. and Harris, L. E. 1984. Mathematical models for estimating energy and protein utilization of feedstuffs. Utah Agricultural Experiment Station, Bulletin 508. Logan.
  10. Hiltner, P. and Dehority, B. 1983. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria. Applied and Environmental Microbiology. 46: 642-648. https://doi.org/10.1128/AEM.46.3.642-648.1983
  11. Kim, D. J., Kim, Y. K. and Maeng, W. J. 1989. Study on the dry matter digestibility of domestic herbage by pepsin-cellulase technique, 1; cell wall constituents and dry matter digestibility of wild grasses. Korean Journal of Animal Sciences. 31(5): 324-333.
  12. Kim, J. G., Chung, E. S., Ham, J. S., Seo, S., Kim, M. J., Yoon, S. H. and Lim, Y. C. 2007. Effect of growth stage and variety on the yield and quality of whole crop rice. Journal of the Korean Society of Grassland and Forage Science. 27(1): 1-8. https://doi.org/10.5333/KGFS.2007.27.1.001
  13. Kim, J. G., Ham, J. S., Chung, E. S., Yoon, S. H., Kim, M. J., Park, H. S., Lim, Y. C. and Seo, S. 2008a. Evaluation of fermentation ability of microbes for whole crop rice silage inoculant. Journal of the Korea Society of Grassland and Forage Science. 28(3): 229-236. https://doi.org/10.5333/KGFS.2008.28.3.229
  14. Kim, J. G., Chung, E. S., Seo, S., Kim, M. J., Lee, J. K., Yoon, S. H., Lim, Y. C. and Cho, Y. M. 2008b. Effect of growth stage and variety on the quality of whole crop rice silage. Journal of the Korea Society of Grassland and Forage Science. 28(1): 29-34. https://doi.org/10.5333/KGFS.2008.28.1.029
  15. Kim, J. G., Chung, E. S., Lee, J. K., Lim, Y. C., Yoon, S. H. and Kim, M. J. 2009. Comparison of yield and quality of direct-seeded whole crop rice. Journal of the Korea Society of Grassland and Forage Science. 29(1): 25-30. https://doi.org/10.5333/KGFS.2009.29.1.025
  16. KOSIS(Korean Statistical Information Service). 2020. Grain consumption survey of 2019. Available from: http://kosis.kr. Accessed October 22, 2020. Korean statistical information service.
  17. Licitra, G., Hernandez, T. M. and Van Soest, P. J. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology. 57(4): 347-358. https://doi.org/10.1016/0377-8401(95)00837-3
  18. Tilley, J. M. A. and Terry, R. A. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass and Forage Science : The Journal of the British Grassland Society. 18(2): 104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
  19. Troelsen, J. E., and Hanel, D. J. 1966. Ruminant digestion in vitro as affected by inoculum donor, collection day, and fermentation time. Canadian Journal of Animal Science. 46(3): 149-156. https://doi.org/10.4141/cjas66-022
  20. Masao, O. and Takeshi, H. 1990. Effects of cropping season and soiling time and height on herbage and grain yield and feeding value. Japanese Journal of Crop Science. 59(3): 419-425. https://doi.org/10.1626/jcs.59.419
  21. Minson, D. 1982. Effect of chemical composition on feed digestibility and metabolizable energy. Nutrition Abstracts and Reviews. pp.591-615.
  22. NRC(National Research Council). 2001. Nutrient Requirement of Dairy Cattle. 7th Revised Edition. National Academy Press. Washington, DC. pp.62-67.
  23. Rohweder, D., Barnes, R. F. and Jorgensen, N. 1978. Proposed hay grading standards based on laboratory analyses for evaluating quality. Journal of Animal Science. 47(3): 747-759. https://doi.org/10.2527/jas1978.473747x
  24. Sakai, M. 2003. New rice varieties for whole crop silage use in Japan. Breeding Science. 53(3): 271-276. https://doi.org/10.1270/jsbbs.53.271
  25. Stiles, D., Bartley, E., Meyer, R. E., Deyoe, C. and Pfost, H. 1970. Feed processing. VII. Effect of an expansion-processed mixture of grain and urea (starea) on rumen metabolism in cattle and on urea toxicity. Journal of Dairy Science. 53(10): 1436-1447. https://doi.org/10.3168/jds.s0022-0302(70)86412-8
  26. Sung, K. I., S. M. Hong, and B. W. Kim.2004 Plant height, dry matter yield and forage quality at different maturity of whole crop rice. Journal of the Korea Society of Grassland and Forage Science. 24(1): 53-60. https://doi.org/10.5333/KGFS.2004.24.1.053