DOI QR코드

DOI QR Code

Knowledge Modeling and Database Construction for Human Biomonitoring Data

인체 바이오모니터링 지식 모델링 및 데이터베이스 구축

  • Lee, Jangwoo (Department of Integrated Risk Assessment Research, Chem.I.Net Ltd.) ;
  • Yang, Sehee (Department of Integrated Risk Assessment Research, Chem.I.Net Ltd.) ;
  • Lee, Hunjoo (Department of Integrated Risk Assessment Research, Chem.I.Net Ltd.)
  • 이장우 (켐아이넷(주) 통합위해평가연구실) ;
  • 양세희 (켐아이넷(주) 통합위해평가연구실) ;
  • 이헌주 (켐아이넷(주) 통합위해평가연구실)
  • Received : 2020.11.16
  • Accepted : 2020.11.26
  • Published : 2020.12.30

Abstract

Human bio-monitoring (HBM) data is a very important resource for tracking total exposure and concentrations of a parent chemical or its metabolites in human biomarkers. However, until now, it was difficult to execute the integration of different types of HBM data due to incompatibility problems caused by gaps in study design, chemical description and coding system between different sources in Korea. In this study, we presented a standardized code system and HBM knowledge model (KM) based on relational database modeling methodology. For this purpose, we used 11 raw datasets collected from the Ministry of Food and Drug Safety (MFDS) between 2006 and 2018. We then constructed the HBM database (DB) using a total of 205,491 concentration-related data points for 18,870 participants and 86 chemicals. In addition, we developed a summary report-type statistical analysis program to verify the inputted HBM datasets. This study will contribute to promoting the sustainable creation and versatile utilization of big-data for HBM results at the MFDS.

인체 바이오모니터링(Human biomonitoring, HBM) 데이터는 뇨와 혈액 등 생체지표으로부터 환경유해물질의 측정을 통해 획득되며, 다양한 노출원과 경로로부터 노출되는 유해물질의 인체노출수준 및 건강영향과의 상관성을 파악하기 위해 매우 중요하다. 국내의 경우 식품의약품안전처를 비롯한 국가기관의 다양한 HBM 프로그램을 통하여 HBM 데이터가 생산되고 있다. 그러나, 목적, 시기, 연구자 및 측정 장비의 차이에 의하여 서로 다른 형식에 따라 생산되다 보니, 데이터의 호환성의 문제로 인하여 특정 HBM 데이터를 신속하게 조회해야 하거나 인구집단별 시간적 추이분석 내지는 다른 국가의 자료와 비교에 난점을 가지고 있다. 따라서, 본 연구에서는 HBM 데이터를 체계적으로 데이터베이스(Database, DB)화하고 활용성을 증진하게 시킬 목적으로 지식 모델링을 실시하였다. 지식 모델링은 HBM 데이터의 생산되는 변수들을 그룹화하고 관계를 분석하여 2차원 구조의 개체 및 집합론에 기초한 방법론인 관계형 데이터 모델링 기법을 활용하여 실시하였다. 지식모델은 조사대상자를 인구집단으로 중심으로 설문자료, 측정자료, 노출 평가자료 개체로 구성하고 그 안에 속성들을 정의하고, 개체간에 관계를 설정하는 방식으로 구성하였다. 또한, 도출된 지식 모델을 기반으로 식품의약품안전처에서 2006년-2018년까지 수행한 HBM의 원시데이터를 수집, 정제 및 정규화하여 통합 DB를 구축하였다. 이와 같이 통합된 HBM-DB는 개별 자료원 내지는 특정 자료원들을 선택하여 기간별 농도 수준에 대한 통계분석은 물론, 다양한 검색조건을 통하여 데이터 추출을 할 수 있는 구조로 구축하였다. 본 HBM-DB는 관계형 DB모델로 구축되어 지속적인 대용량 DB 축적이나 HBM 데이터 해석을 위한 도구로써 효율적으로 수행할 수 있을 것으로 생각된다.

Keywords

Acknowledgement

본 연구는 2019년도 식품의약품안전처의 연구개발비(19162위해기096)로 수행되었으며 이에 감사드립니다.

References

  1. Kim, S.K., Application of biomonitoring to activities on environmental health and recommendations for korean national environmental health survey. KJPH., 52(1), 59-74 (2015).
  2. World Health Organization, 2015. Human biomonitoring: facts and figures. Copenhagen: WHO Regional Office for Europe, Geneva, Swizerland.
  3. Centers for Disease Control and Prevention, 2019. Fourth National Report on Human Exposure to Environmental Chemicals. Atlanta, GA:Centers for Disease Control and Prevention, National Center for Environmental Health.
  4. European Human Biomonitoring Initiative (HBM4EU), (2020, November 3). Retrieved from https://www.hbm4eu.eu/
  5. National Institute of Environmental Reaearch, 2016. Korean National Environmental Health Survey (KoNEHS): Annual Report on third stage, 2nd year, Incheon, Korea.
  6. Association of Public Health Laboratories (APHL), (2020, November 3). Retrieved from https://www.aphl.org/programs/environmental_health/nbn/Pages/application.aspx
  7. European Human Biomonitoring Initiative (HBM4EU), (2020, November 3). Data management. Retrieved from https://www.hbm4eu.eu/data-management/
  8. Codd, E.F., Derivability, Redundancy, and Consistency of Relations Stored in Large Data Banks, Research Report, IBM, 1969.
  9. Kwon, N.J., Suh, J.H., Lee, H.J., Data Cleaning and Integration of Multi-year Dietary Survey in the Korea National Health and Nutrition Examination Survey (KNHANES) using Database Normalization Theory, J. Environ. Health Sci., 43(4), 298-306 (2017).
  10. Kwon, B.R., Lee, H.J., Developing a Multi-purpose Ecotoxicity Database Model and Web-based Searching System for Ecological Risk Assessment of EDCs in Korea, J. Environ. Health Sci., 43(5), 412-421 (2017).
  11. Ministry of Food and Drug Safety, 2006. Human Exposure Asesment Study of Bisphenol A, Cheongju, Korea.
  12. Ministry of Food and Drug Safety, 2006. Human Exposure Asesment Study of Zearalenone, Cheongju, Korea.
  13. Ministry of Food and Drug Safety, 2007. Biomonitoring of exposure to metals derived from artificial joints, Cheongju, Korea.
  14. Ministry of Food and Drug Safety, 2008. Survey of human milk for POPs in coperation with WHO, Cheongju, Korea.
  15. Ministry of Food and Drug Safety, 2010. Database of biological samples for human bio monitoring of hazard materials, Cheongju, Korea.
  16. Ministry of Food and Drug Safety, 2011. Human Biomonitoring of Phthalates, Heterocyclic amines and Phenols for Korean Children, Cheongju, Korea.
  17. Ministry of Food and Drug Safety, 2011. Biomonitoring of acrylamides in children's urinen, Cheongju, Korea.
  18. Ministry of Food and Drug Safety, 2010. Biomonitoring of hazardous materials - 5 chemicals including acrylamide, Cheongju, Korea.
  19. Ministry of Food and Drug Safety, 2012. A study on the integrated exposure to hazardous materials for safety control, Cheongju, Korea.
  20. Ministry of Food and Drug Safety, 2017. Integrated Risk Assessment Study of Endocrine Disruptors, Cheongju, Korea.
  21. Ministry of Food and Drug Safety, 2018. Study on the exposure asesment system based on human biomonitoring(I)(Total exposure asesment of bisphenols, acrylamides, furans, Cheongju, Korea.
  22. The Korean chemical society, 2013. Organic Compound Nomenclature, Seoul, Korea.
  23. The Korean chemical society, 2017. Inorganic Compound Nomenclature, Seoul, Korea.
  24. Assens, M., Frederiksen, H., Petersen, J.H., Larsen, T., Skakkebæk, N.E., Juul, A., Andersson, A., Main, K.M., Variations in repeated serum concentrations of UV filters, phthalates, phenols and parabens during pregnancy. Environ. Int. 123, 318-324 (2019). https://doi.org/10.1016/j.envint.2018.11.047
  25. Attaullah, M., Yousuf, M.J., Shaukat, S., Anjum, S.I., Ansari, M.J., Buneri, I.D., Tahir, M., Amin, M., Ahmad, N., Khan, S.U., Serum organochlorine pesticides residues and risk of cancer: A case-control study. Saudi. J Biol. Sci. 25, 1284-1290 (2018). https://doi.org/10.1016/j.sjbs.2017.10.023
  26. Goerke, K., Ruenz, M., Lampen, A., Klaus, A., Bakuradze, T., Eisenbrand, G., Richling, E., Biomonitoring of nutritional acrylamide intake by consumers without dietary preferences as compared to vegans. Arch Toxicol, 93(4), 987-996 (2019). https://doi.org/10.1007/s00204-019-02412-x
  27. Husoy, T., Andreassen, M., Hjertholm, H., Carlsen, M.H., Norberg, N., Sprong, C., Papadopoulou, E., Sakhi, A.K., Sabaredzovic, A., Dirven, H.A.A.M., The Norwegian biomonitoring study from the EU project EuroMix: Levels of phenols and phthalates in 24-hour urine samples and exposure sources from food and personal care products. Environment International, 132, 105103 (2019). https://doi.org/10.1016/j.envint.2019.105103
  28. Wu, X.M., Bennett, D.H., Calafat, A.M., Kato, K., Strynar, M., Andersen, E., Moran, R.E., Tancredi, D.J., Tulve, N.S., Hertz-Picciotto, I., Serum concentrations of perfluorinated compounds (PFC) among selected populations of children and adults in California. Environ. Res. 136, 264-273 (2015). https://doi.org/10.1016/j.envres.2014.09.026
  29. Hornung, R.W., Reed, L.D., Estimation of average concentration in the presence of nondetectable values. Applied Occupational and Environmental Hygiene, 5, 46-51 (1990). https://doi.org/10.1080/1047322X.1990.10389587
  30. Larry, L.N., Antinia, M.C., Dana, B.B., Uses and issues of biomonitoring. Int. J. Hyg. Environ. Health, 210, 229-238 (2007). https://doi.org/10.1016/j.ijheh.2006.11.002
  31. National Research Council (U.S.), 2006. Committee on Human Biomonitoring for Environmental Toxicants. Human biomonitoring for environmental chemicals. Washington, DC: National Academies Press, pp. 291.
  32. National Institute of Environmental Reaearch, 2015. Research development and planing for Korean National Environmental Health Survey (KoNEHS) (III), Incheon, Korea.
  33. Ministry of Food and Drug Safety, 2010. Study on human biomonitoring of hazardous substances, MFDS, Cheongju, Korea.
  34. Ministry of Environment, 2007. Korean exposure factors handbook. Seoul, Korea.
  35. Ministry of Food and Drug Safety, 2010. Integrated risk assessment on Bisphenols, MFDS, Cheongju, Korea.
  36. Tan, Y.M., Liao, K.H., Clewell, H.J., 3rd. Reverse dosimetry: interpreting trihalomethanes biomonitoring data using physiologically based pharmacokinetic modeling. J. Expo Sci. Environ. Epidemiol., 17(7), 591-603 (2007). https://doi.org/10.1038/sj.jes.7500540