Next-Generation Sequencing (NGS) Analysis and Application Technology for Genomic Study of Animal Food Microorganism

축산식품 미생물 유전체 연구를 위한 차세대 염기서열(NGS) 분석 및 활용 기술

  • Kim, You-Tae (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University) ;
  • Kwon, Joon-Gi (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University) ;
  • Lee, Jo-Seph (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University) ;
  • Lee, Ju-Hoon (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University)
  • 김유태 (서울대학교 농업생명과학대학 식품동물생명공학부 및 식품바이오융합연구소) ;
  • 권준기 (서울대학교 농업생명과학대학 식품동물생명공학부 및 식품바이오융합연구소) ;
  • 이요셉 (서울대학교 농업생명과학대학 식품동물생명공학부 및 식품바이오융합연구소) ;
  • 이주훈 (서울대학교 농업생명과학대학 식품동물생명공학부 및 식품바이오융합연구소)
  • Published : 2020.10.31

Abstract

Keywords

References

  1. 백영진, 정충일, 박승용. 2005. 축산식품 미생물학. 유한문화사.
  2. Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 74:5463-5467. https://doi.org/10.1073/pnas.74.12.5463
  3. Wetterstrand KA. 2020. DNA sequencing costs: Data from the NHGRI Genome Sequencing Program (GSP). http://www.genome.gov/sequencingcostsdata.
  4. Nordstrom T, Gharizadeh B, Pourmand N, Nyren P, Ronaghi M. 2001. Method enabling fast partial sequencing of cDNA clones. Anal Biochem 292:266-271. https://doi.org/10.1006/abio.2001.5094
  5. Ravi RK, Walton K, Khosroheidari M. 2018. MiSeq: A next generation sequencing platform for genomic analysis. Methods Mol Biol 1706:223-232. https://doi.org/10.1007/978-1-4939-7471-9_12
  6. Rhoads A, Au KF. 2015. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13:278-89. https://doi.org/10.1016/j.gpb.2015.08.002
  7. Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, Zeng K, Malek JA, Costa G, McKernan K, Sidow A, Fire A, Johnson SM. 2008. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18:1051-1063. https://doi.org/10.1101/gr.076463.108
  8. Pennisi E. 2010. Semiconductors inspire new sequencing technologies. Science 327:1190. https://doi.org/10.1126/science.327.5970.1190
  9. Cao MD, Ganesamoorthy D, Elliott AG, Zhang H, Cooper MA, Coin LJ. 2016. Streaming algorithms for identification of pathogens and antibiotic resistance potential from real-time MinION(TM) sequencing. Gigascience 5:32. https://doi.org/10.1186/s13742-016-0137-2
  10. Forde BM, O'Toole PW. 2013. Next-generation sequencing technologies and their impact on microbial genomics. Brief Funct Genomics 12:440-453. https://doi.org/10.1093/bfgp/els062
  11. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814-821. https://doi.org/10.1038/nbt.2676
  12. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. 2017. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35:833-844. https://doi.org/10.1038/nbt.3935
  13. Shakya M, Lo CC, Chain PSG. 2019. Advances and challenges in metatranscriptomic analysis. Front Genet 10:904. https://doi.org/10.3389/fgene.2019.00904
  14. Weimer BC. 2017. 100K pathogen genome project. Genome Announc 5:e00594-17. https://doi.org/10.1128/genomeA.00594-17
  15. Timme RE, Rand H, Sanchez Leon M, Hoffmann M, Strain E, Allard M, Roberson D, Baugher JD. 2018. GenomeTrakr proficiency testing for foodborne pathogen surveillance: An exercise from 2015. Microb Genom 4:e000185.
  16. Zheng J, Wittouck S, Salvetti E, Franz CM, Harris HM, Mattarelli P, O'Toole PW, Pot B, Vandamme P, Walter J. 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70:2782-2858. https://doi.org/10.1099/ijsem.0.004107
  17. Oh NS, Lee JY, Kim YT, Kim SH, Lee JH. 2020. Cancer-protective effect of a synbiotic combination between Lactobacillus gasseri 505 and a Cudrania tricuspidata leaf extract on colitis-associated colorectal cancer. Gut Microbes 12:1785803. https://doi.org/10.1080/19490976.2020.1785803
  18. Liu J, Taft DH, Maldonado-Gomez MX, Johnson D, Treiber ML, Lemay DG, DePeters EJ, Mills DA. 2019. The fecal resistome of dairy cattle is associated with diet during nursing. Nat Commun 10:4406. https://doi.org/10.1038/s41467-018-06543-0
  19. Ryu S, Park MR, Maburutse BE, Lee WJ, Park DJ, Cho S, Hwang I, Oh S, Kim Y. 2018. Diversity and characteristics of the meat microbiological community on dry aged beef. J Microbiol Biotechnol 28:105-108. https://doi.org/10.4014/jmb.1708.08065
  20. Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: A revolutionary tool for transcriptomics. Nat Rev Genet 10:57-63. https://doi.org/10.1038/nrg2484