DOI QR코드

DOI QR Code

Optimization of In Vivo Stickiness Evaluation for Cosmetic Creams Using Texture Analyzer

Texture Analyzer (TA)를 이용한 화장품 크림의 In Vivo 끈적임 평가법의 최적화

  • 류주연 ((주)엘지생활건강 기술연구원) ;
  • 배정은 ((주)엘지생활건강 기술연구원) ;
  • 강내규 ((주)엘지생활건강 기술연구원)
  • Received : 2020.09.08
  • Accepted : 2020.12.10
  • Published : 2020.12.30

Abstract

There have been continuous attempts to quantify sensory attributes of cosmetic products by measuring relevant physical properties. The most representative method to evaluate stickiness is to measure axial force using texture analyzer. Stickiness is known to correlate with AUC which abbreviates area under curve in the obtained axial force curve as a function of time. Recently, Normandie University research group developed in vivo stickiness evaluation method considering the characteristics of skin along with established evaluation method[8]. Based on the study, we tried to optimize in vivo stickiness evaluation method especially for cosmetic creams. The experiment was carried out on 5 different facial creams products by changing the amount and the times of rolling of creams, and the shape and material of probes. Based on the results of the sensory evaluation, the most consistent conditions were established as the optimal evaluation method. As a result, applying 70 μL of cream and rubbing 10 times for 7 s inside the 3.4 cm circle were judged to be suitable. As for the probes, spherical metallic probe was more proper due to its reproducibility. We conducted the settled method on 10 subjects to check its validity. Although the absolute values of AUC differed depending on the individuals, the AUC values were all ranked the same. Finally, for the standardization of stickiness of AUC, polyvinylpyrrolidone (PVP) was set as a reference material and we measured AUC of its aqueous solution by changing concentration. Then, the degree of stickiness recognition for 5 different creams was surveyed to check the correlation between AUC and stickiness.

화장품의 사용감을 관계 있는 물성의 측정을 통해 정량화하려는 시도가 이어져오고 있다. 그 중 끈적임은 texture ananlyzer를 이용하여 수직 힘을 측정하는 방식이 대표적이며, 시간에 따른 수직 힘의 그래프에서 음의 면적인 area under curve (AUC)와 상관관계를 갖는 것으로 알려져 있다. 최근 노르망디 대학에서는 이러한 특성에 피부의 특성을 함께 고려하여 TA를 이용한 in vivo 끈적임 평가법을 개발하였다[8]. 본 연구에서는 이를 확장하여 화장품 크림의 in vivo 끈적임 평가법을 최적화하고자 하였다. 페이셜 크림 5 종을 대상으로 크림의 도포량 및 도포 횟수, 탐침의 모양과 소재를 바꾸어 보면서 실험을 진행하였고, 관능 평가 결과를 기준으로 가장 부합하는 조건을 최적의 평가법으로 설정하였다. 그 결과, 3.4 cm의 원 내부에 70 μL의 크림을 7 s 동안 10 회 문지르고 측정하는 방식이 가장 적합한 것으로 판단되었다. 탐침의 경우, 원기둥형보다 구형의 탐침이 재현성이 높게 나타나 구형의 금속 탐침을 택하였다. 최적의 평가법을 확보하여 10 인의 피험자를 대상으로 인체 평가를 진행한 결과, 사람에 따른 절대값에는 차이가 있으나 AUC의 순위는 모두 같게 얻어졌다. 마지막으로 AUC의 끈적임 표준화의 시도로 PVP를 표준 물질로 설정하여 농도 별로 AUC를 측정하고, 5종의 크림 별 끈적임 인지율을 확인하여 AUC와 끈적임의 상관관계에 대해 알아보았다.

Keywords

References

  1. V. A. L. Wortel and J. W. Wiechers, Skin sensory performance of individual personal care ingredients and marketed personal care products, Food. Qual. Prefer., 11(1-2), 121 (2000). https://doi.org/10.1016/S0950-3293(99)00057-9
  2. M. Holliins, R. Faldowski, S. Rao, and F. Young, Perceptual dimensions of tactile surface texture: a multidimensional scaling analysis, Percept. Psychophys., 54, 697 (1993). https://doi.org/10.3758/BF03211795
  3. J. A. Fishel and G. E. Loeb, Bayesian exploration for intelligent identification of textures, Front. Neurorobot., 6, 4 (2012). https://doi.org/10.3389/fnbot.2012.00004
  4. L.F.M. Kuijt-Evers, T. Bosch, M.A. Huysmans, M.P. de Looze, and P. Vink, Association between objective and subjective measurements of comfort and discomfort in hand tools, Appl. Ergon., 38(5), 643 (2007). https://doi.org/10.1016/j.apergo.2006.05.004
  5. A. Tai, R. Bianchini, and J. Jachowicz, Texture analysis of cosmetic-pharmaceutical raw materials and formulations, Int. J. Cosmet. Sci., 36(4), 291 (2014) https://doi.org/10.1111/ics.12125
  6. K. Kusakari, M. Yoshida, F. Matsuzaki, T. Yanaki, H. Fukui, and M. Date, Evaluation of post-application rheological changes in cosmetics using a novel measuring device: Relationship to sensory evaluation, J. Cosmet. Sci., 54(4), 321(2003).
  7. M. Lukic, I. Jaksic, V. Krstonosic, N. Cekica, and S. Savic, A combined approach in characterization of an effective w/o hand cream: the influence of emollient on textural, sensorial and in vivo skin performance, Int. J. Cosmet. Sci., 34(2), 140 (2012). https://doi.org/10.1111/j.1468-2494.2011.00693.x
  8. F. Eudier, D. Hirel, M. Grisel, C. Picard, and G. Savary, Prediction of residual film perception of cosmetic products using an instrumental method and non-biological surfaces: the example of stickiness after skin application, Colloids Surf. B, 174, 181 (2019). https://doi.org/10.1016/j.colsurfb.2018.10.062
  9. R. K. Sivamani, G. C. Wu, N. V. Gitis, and H. I. Maibach, Tribological testing of skin products: gender, age, and ethnicity on the volar forearm, Skin. Res. Technol., 9(4), 299 (2003). https://doi.org/10.1034/j.1600-0846.2003.00034.x
  10. S. Nacht, J. Close, D. Yeung, and E. H. Gans, Skin friction coefficient: changes induced by skin hydration and emolient application and correlation with perceived skin feel, J. Soc. Cosmet. Chem., 32(2), 55 (1981).
  11. S. R.L. Werner, J. R. Jones, and A. H.J. Paterson, Stickiness during drying of amorphous skin-forming solutions using a probe tack test, J. Food. Eng., 81(4), 647 (2007). https://doi.org/10.1016/j.jfoodeng.2006.12.008
  12. C. Pailler-Mattei and H. Zahouani, Study of adhesion forces and mechanical properties of human skin in vivo, J. Adhes. Sci. Technol., 18(15-16), 1739 (2004). https://doi.org/10.1163/1568561042708368
  13. A. Kim, C. Hwang, and B. S. Jin, Quantitative evaluation of the effectiveness of vibrating cosmetic devices, Kor. J. Aesthet. Cosmetol., 12(2), 267 (2014).
  14. Korea Patent 10-2017-0003290A (2017).
  15. W. Tang, B. Bhushan, and S. Ge, Friction, adhesion and durability and influence of humidity on adhesion and surface charging of skin and various skin creams using atomic force microscopy, Microscopy, 239(2), 99 (2010).
  16. S. Joo and D. F. Baldwin, Adhesion mechanisms of nanoparticle silver to substrate materials: identification, Nanotechnology, 21(5), 1 (2009).
  17. W. Tang, J. Zhang, S. Chen, N. Chen, H. Zhu, S. Ge, and S. Zhang, Tactile Perception of Skin and Skin Cream, Tribol. Lett., 59(24), 1 (2015). https://doi.org/10.1007/s11249-015-0539-9