참고문헌
- Ahmad, T., Park J.M., Choi S.A. and Lee S.S. (2018) Characteristics of carbon dioxide adsorption with the physical property of activated carbon. Clean Technology, v.24, p.287-292. https://doi.org/10.7464/KSCT.2018.24.4.287
- Amstaetter, K., Eek, E. and Cornelissen, G. (2012) Sorption of PAHs and PCBs to activated carbon: Coal versus biomass-based quality. Chemosphere, v.87, p.573-578. https://doi.org/10.1016/j.chemosphere.2012.01.007
- Andrus, H.E., Burns, G., Chiu, J.H., Liljedahl, G.N., Stromberg, P.T., Thibeault, P.R. and Jain, S.C. (2005) ALSTOM's hybrid combustion-gasification chemical looping power technology development. Proc. 22nd Annual International Pittsburgh Coal Conference, Pittsburgh, Pennsylvania, USA.
- Andrus, H.E., Burns, G., Chiu, J.H., Liljedahl, G.N., Stromberg, P.T. and Thibeault, P.R. (2008) Hybrid combustion-gasification chemical looping power technology development. ALSTOM Technical Report, U.S. Department of Energy National Energy technology Laboratory, Pittsburgh, Pennsylvania, No. DE-FC26-03NT41866.
- Atria, J.V., Rusinko, F. and Schobert, H.H. (2002) Structural ordering of pennsylvania anthracites on heat treatment to 2000-2900℃. Energ. Fuel., v.16, p.1343-1347. https://doi.org/10.1021/ef010295h
- Baraniecki, C., Pinchbeck, P.H. and Pickering, F.B. (1969) Some aspects of graphitization induced by iron and ferro-silicon additions. Carbon, v.7, p.213-224. https://doi.org/10.1016/0008-6223(69)90104-3
- Biscoe, J. and Warren, B.E. (1942) An X-ray study of carbon black. J. Appl. Phys., v.13, p.364-371. https://doi.org/10.1063/1.1714879
- Blanche, C., Rouzaud, J.N. and Dumas, D. (1995) Carbon '95: 22nd Biennial Conference on Carbon: Extended Abstracts; American Carbon Society: San Diego, CA, p.694.
- Boobar, M. (1954) Effect of thermal treatment on the mineral constituents and crystallographic structure of anthracite. PhD thesis in Fuel Technology, Pennsylvania State Univ., University Park, p.45-89.
- Braun, T.J., Sloan, D.G., Turek, D.G., Unker, S.A. and Vitse, F. (2017) ALSTOM's Limestone chemical looping gasification process for high hydrogen syngas generation. U.S. DOE/NETL Cooperative Agreement No. DE-FE0023497., U.S. Department of Energy National Energy Technology Laboratory Pittsburgh, Pennsylvania.
- Brusset, H. (1949) The Graphitation; La graphitization. Bull. Soc. Chim. France.
- Cabielles, M., Montes-Moran, M.A. and Garcia, A.B. (2008) Structural study of graphite materials prepared by HTT of unburned carbon concentrates from coal combustion fly ashes. Energ. Fuel., v.22, p.1239-1243. https://doi.org/10.1021/ef700603t
- Camean, I., Lavela, P., Tirado, J.L. and Garcia, A.B. (2010) On the electrochemical performance of anthracitebased graphite materials as anodes in lithium-ion batteries. Fuel, v.89, p.986-991. https://doi.org/10.1016/j.fuel.2009.06.034
- Camean, I. and Garcia A.B. (2011) Graphite materials prepared by HTT of unburned carbon from coal combustion fly ashes: Performance as anodes in lithium-ion batteries. J. Power Sources, v.196, p.4816-4820. https://doi.org/10.1016/j.jpowsour.2011.01.041
- DACO (2014) Trend of market and technology development for graphene and nanomaterial. DACO Industrial Research Market Report 2014-04, 32p.
- Deurbergue, A., Oberlin, A., Oh, J. and Rouzaud, J. (1987) Graphitization of Korean anthracites as studied by transmission electron microscopy and X-ray diffraction. Int. J. Coal Geol., v.8, p.375-393. https://doi.org/10.1016/0166-5162(87)90074-7
- Dobbyn, R.C., Ondik, H.M., Willard, W.A., Brower, W.S., Feinberg, I.J., Hahn, T.A., Hicho, G.E., Read, M.E., Robbins, C.R. and Smith. J.H. (1979) Evaluation of the performance of materials and components used in the CO2 acceptor process gasification pilot plant. U.S. Department of Energy Report No. DE85013673.
- Feng, G., Jiangying, Q., Zongbin, Z., Quan, Z. and Beibei, L. (2014) A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application. Carbon, v.80, p.640-650. https://doi.org/10.1016/j.carbon.2014.09.008
- Ferreras, J.F., Blanco, C., Pajares, J.A., Mahamud, M. and Pis, J.J. (1993) A Combined FTIR and Textural Study of the Oxidation of a Bituminous Coal. Spectrosc. Lett., v.26, p.897-912. https://doi.org/10.1080/00387019308011580
- Franklin, R.E. (1951) Crystallite growth in graphitizing and non-graphitizing carbons. P. Roy. Soc. A-Math. Phy., v.209, p.196-218.
- Gao, L., Paterson, N., Dugwell, D. and Kandiyoti, R. (2008) The Zero-emission carbon concept (ZECA): Equipment commissioning and extents of the reaction with hydrogen and steam. Energ. Fuel., v.22, p.463-470. https://doi.org/10.1021/ef700534m
- Gnesin, G.G. (2015) Carbon in inorganic materials: From charcoal to graphene. Powder Metall. Met. C+, v.54, p.241-251. https://doi.org/10.1007/s11106-015-9706-7
- Gonzalez, D., Montes-Moran, M.A. and Garcia, A.B. (2003) Graphite Materials Prepared from an Anthracite:A Structural Characterization. Energ. Fuel., v.17, p.1324-1329. https://doi.org/10.1021/ef0300491
- Harris, L.A. and Yust, C.S. (1976) Transmission electron microscope observation of porosity in coal. Fuel v.55, p.233-236. https://doi.org/10.1016/0016-2361(76)90094-6
- Hassler, J.W. (1974) Purification with activated carbon; Industrial, Commercial, Environmental. Chemical Pub. Co. Inc., New York.
- Huang, S., Guo, H., Li, X., Wang, Z., Gan, L., Wang, J. and Xiao, W. (2013) Carbonization and graphitization of pitch applied for anode materials of high power lithium ion batteries. J. Solid State Electr., v.17, p.1401-1408. https://doi.org/10.1007/s10008-013-2003-9
- Jeremy R. (2020) The Global Green New Deal (Korean translation edition). Minumsa, 60p.
- Jibril, B.Y., Al-Maamari, R.S., Hegde, G., Al-Mandhary, N. and Houache, O. (2007) Effects of feedstock pre-drying on carbonization of KOH-mixed bituminous coal in preparation of activated carbon. J. Anal. Appl. Pyrol., v.80, p.277-282. https://doi.org/10.1016/j.jaap.2007.03.003
- Joseph V.A., Frank R.Jr. and Harold H.S. (2002) Structural ordering of pennsylvania anthracites on heat treatment to 2000-2900℃. Energy & Fuels, v.16, p.1343-1347. https://doi.org/10.1021/ef010295h
- Kanniche, M. and Bouallou, C. (2007) CO2 capture study in advanced integrated gasification combined cycle. Appl. Therm. Eng., vol.27, p.2693-2702. https://doi.org/10.1016/j.applthermaleng.2007.04.007
- Kim B.J., Kim J.S., Kim H., Lim J.S. and Choi Y.C. (2019) Industrial status and technology prospect of activated carbon. Korean Evaluation Institute of Industrial Technology (KEIT) PD Issue Report, v.19-12, p.109-127.
- Li, W.G., Gong, X.J., Wang, K., Zhang, X.R. and Fan, W.B. (2014) Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon. Bioresour. Technol., v.165, p.166-173. https://doi.org/10.1016/j.biortech.2014.02.069
- Li, Z., Hu, C., Yu, C., Adams, H. and Qiu, J. (2010) Preparation and mechanical properties of highly-aligned carbon micro-trees. Carbon, v.48, p.1926-1931. https://doi.org/10.1016/j.carbon.2010.01.059
- Lin, S., Harada, M., Suzuki, Y. and Hatano, H. (2005) Process analysis for hydrogen production by reaction integrated novel gasification (HyPr-RING). Energ. Convers. Manage., v.46, p.869-880. https://doi.org/10.1016/j.enconman.2004.06.008
- Liu, T., Luo, R., Yoon, S.H. and Mochida, I. (2010) Anode performance of boron-doped graphites prepared from shot and sponge cokes. J. Power Sources, v.195, p.1714-1719. https://doi.org/10.1016/j.jpowsour.2009.08.104
- Marsh, H. and Neavel, R.C. (1980) Carbonization and liquid-crystal(mesophase) development. 15. A common stage in mechanisms of coal liquifaction and of coal blends for coke making. Fuel, v.59, p.511-513. https://doi.org/10.1016/0016-2361(80)90179-9
- Min, Z., Jiawei, Y., Haixia, W., Wenzhuo, S., Jiali, Z., Chenglong, Y., Li, L., Qiaoe, H., Feng, G., Yafei, T., Ye, H. and Shouwu, G. (2020) Multilayer graphene spheres generated from anthracite and semi-coke as anode materials for lithium-ion batteries. Fuel Proc. Tech., v.198, 106241. https://doi.org/10.1016/j.fuproc.2019.106241
- Nawaz, M. and Ruby, J. (2001). Zero emission coal alliance project conceptual design and economics. Proc. 26th International Technical Conference on Coal Utilization and Fuel Systems, The Clearwater Conference, Florida, USA.
- Newell, J.A., Edie, D.D. and Fuller Jr, E.L. (2015) Kinetics of carbonization and graphitization of PBO fiber. J. Appl. Polym., v.60, p.825-832.
- Noda, T., Sumiyoshi, Y. and Ito, N. (1968) Growth of single crystals of graphite from a carbon-iron melt. Carbon, v.6, p.813-816. https://doi.org/10.1016/0008-6223(68)90067-5
- Oberlin, A. and Rouchy, J.P. (1971) Transformation des carbones non graphitables par traitement thermique en presence de fer. Carbon, v.9, p.39-46. https://doi.org/10.1016/0008-6223(71)90142-4
- Oberlin, A. and Terriere, G. (1975) Graphization studies of anthracites by high resolution electron microscopy. Carbon, v.13, p.367-376. https://doi.org/10.1016/0008-6223(75)90004-4
- Pappano, P.J. (2003) A mechanism of Pennsylvania anthracite graphitization involving carbide formation and decomposition. Ph.D. Thesis in Energy and Geo-Environmental Engineering, The Pennsylvania State University, University Park, USA, 27p.
- Parra, J.B., Pis, J.J., De Sousa, J.C., Pajares, J.A. and Bansal, R.C. (1996) Effect of coal preoxidation on the development of microporosity in activated carbons. Carbon, v.34, p.783-787. https://doi.org/10.1016/0008-6223(96)00030-9
- Piotr, B., Tomasz, C., Leszek, C. and Magdalena, G.G. (2016) Carbon footprint of the hydrogen production process utilizing subbituminous coal and lignite gasification. J. Cleaner Production, v.139, p.858-865. https://doi.org/10.1016/j.jclepro.2016.08.112
- Pis, J.J., Cagigas, A., Simon, P. and Lorenzana, J.J. (1988) Effect of aerial oxidation of coking coals on the technological properties of the resulting cokes. Fuel Process. Technol., v.20, p.307-316. https://doi.org/10.1016/0378-3820(88)90029-X
- Py, X., Daguerre, E. and Menard, D. (2002) Composites of expanded natural graphite and in situ prepared activated carbon. Carbon, v.40, p.1255-1265. https://doi.org/10.1016/S0008-6223(01)00285-8
- Qiu, J., Li, Y., Wang, Y., Wang, T. and Zhao, Z. (2003) High-purity single-wall carbon nanotubes synthesized from coal by arc discharge. Carbon, v.41, p.2170-2173. https://doi.org/10.1016/S0008-6223(03)00242-2
- Rizeq, G., Lyon, R.K., Zamansky, V.M. and Das, K. (2001) Fuel-flexible AGC technology for production of H2, power, and sequestration-ready CO2. Proc. 26th International Technical Conference on Coal Utilization and Fuel Systems, The Clearwater Conference, Florida, USA.
- Rizeq, G., West, J., R., Frydman Subia, R., Zamansky, V., Wiltowski, T., Miles, T. and Springsteen B. (2001) Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration- Ready CO2. Quarterly Technical Progress Report No. 5, DOE Award No. DE-FC26-00FT40974.
- Rizeq G., West, J., Frydman, A., Subia, R., Zamansky, V., Wiltowski, T., Miles, T., and Springsteen, B. (2002) Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2. Annual Technical Progress Report, U.S. Department of Energy, Washington D. C., No. DE-FC26-00FT40974.
- Rodrigues, S., Suarez-Ruiz, I., Marques, M. and Flores, D. (2012) Catalytic role of mineral matter in structural transformation of anthracites during high temperature treatment. Int. J. Coal Geol., v.93, p.49-55. https://doi.org/10.1016/j.coal.2012.01.012
- Saliger, R., Fischer, U., Herta, C. and Fricke, J. (1998) High surface area carbon aerogel for supercapacitors. J. Non-Cryst. Solids, v.225, p.81-85. https://doi.org/10.1016/S0022-3093(98)00104-5
- Schobert, H.H. (1990) The Chemistry of Hydrocarbon Fuels. Butterworth-Heinemann, Boston, 120p.
- Schwartz, A.S. and Bokros, J.C. (1967) Catalytic graphitization of carbon by titanium. Carbon, v.5, p.325-330. https://doi.org/10.1016/0008-6223(67)90048-6
- Slowi ski, G. (2006) Some technical issues of zeroemission coal technology. Int. J. Hydrogen Energ., v.31, p.1091-1102. https://doi.org/10.1016/j.ijhydene.2005.08.012
- Song, G., Deng, R., Yao, Z., Chen, H., Romero, C., Lowe, T., Driscoll, G., Kreglow, B., Schobert, H. and Baltrusaitis, J. (2020) Anthracite coal-based activated carbon for elemental Hg adsorption in simulated flue gas: Preparation and evaluation. Fuel, v.275, p.117921. https://doi.org/10.1016/j.fuel.2020.117921
- Stavropoulos, G.G. (2005) Precursor materials suitability for super activated carbons production. Fuel Process. Technol., v.86, p.1165-1173. https://doi.org/10.1016/j.fuproc.2004.11.011
- Sun, J., Hippo, E.J., Marsh, H., O'Brien, W.S. and Crelling, J.C. (1997) Activated carbon produced from an Illinois basin coal. Carbon, v.35, p.341-351. https://doi.org/10.1016/S0008-6223(96)00157-1
- Tao W., Yongbang W., Guo C., Cheng M., Xiaojun L., Jitong W., Wenming Q. and Licheng L. (2020) Catalytic graphitization of anthracite as an anode for lithium-ion batteries. Energy Fuels, v.34, p.8911-8918. https://doi.org/10.1021/acs.energyfuels.0c00995
- Tim, T. (2019) Japan and australia launch an experimental coal to hydrogen expert industry, Forbes.com/sites/timtreadgold/2019/07/24/Japan-and-australia-launch-an-experimental-coal-to-hydrogen-expert-industry/
- Yamashita, Y. and Ouchi, K. (1982) Influence of alkali on the carbonization process-I: Carbonization of 3,5-dimethylphenol-formaldehyde resin with NaOH. Carbon, v.20, p.41-45. https://doi.org/10.1016/0008-6223(82)90072-0
- Yang, Y., Pang, Y., Liu, Y. and Guo H. (2018) Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form-stable phase change material for indoor energy saving. Mater. Lett., v.216, p.220-223. https://doi.org/10.1016/j.matlet.2018.01.025
- Yeh, T.S., Wu, Y.S. and Lee, Y.H. (2011) Graphitization of unburned carbon from oil-fired fly ash applied for anode materials of high power lithium ion batteries. Mater. Chem. Phys., v.130, p.309-315. https://doi.org/10.1016/j.matchemphys.2011.06.045
- Yokogawa, C, Hosokawa, K. and Takegami, Y. (1966) Low temperature catalytic graphitization of hard carbon. Carbon, v.4, p.459-465. https://doi.org/10.1016/0008-6223(66)90060-1
- Yun, Y.S., Im, C., Park, H.H., Hwang, I., Tak, Y. and Jin, H.J. (2013) Hierarchically porous carbon nanofibers containing numerous heteroatoms for supercapacitors. J. Power Sources, v.234, p.285-291. https://doi.org/10.1016/j.jpowsour.2013.01.169
- Zhao, H., Wang, L., Jia, D., Xia, W., Li, J. and Guo, Z. (2014) Coal based activated carbon nanofibers prepared by electrospinning. J. Mater. Chem. A, v.2, p.9338-9344. https://doi.org/10.1039/c4ta00069b
- Zhewei Y., Yang Y., Huajun G., Zhixing W., Xinhai L., Yu Z. and Jiexi W. (2018) Compact structured silicon/carbon composites as high-performance anodes for lithium ion batteries. Ionics, v.24, p.3405-3411. https://doi.org/10.1007/s11581-018-2486-6
- Zhou, Y., Wang, Y., Chen, H. and Zhou, L. (2005) Methane storage in wet activated carbon: Studies on the charging/discharging process. Carbon, v.43, p.2007-2012. https://doi.org/10.1016/j.carbon.2005.03.017
- Ziock, H.J., Lackner, K.S. and Harrison, D.P. (2001) Zero emission coal power, a new concept (No. LA-UR-01-2214). Los Alamos National Lab., NM (US).
- Zou, Y. and Han, B.X. (2001) High-surface-area activated carbon from chinese coal. Energ. Fuel., v.15, p.1383-1386. https://doi.org/10.1021/ef0002851