DOI QR코드

DOI QR Code

온대북부형 낙엽활엽수림의 디지털 카메라 반복 이미지를 활용한 식물계절 분석

Phenophase Extraction from Repeat Digital Photography in the Northern Temperate Type Deciduous Broadleaf Forest

  • 한상학 (국립생태원 기후변화연구팀) ;
  • 윤충원 (공주대학교 산림자원학과) ;
  • 이상훈 (국립생태원 기후변화연구팀)
  • Han, Sang Hak (Team of Climate Change Research, National Institute of Ecology) ;
  • Yun, Chung Weon (Department of Forest Resources, Kongju National University) ;
  • Lee, Sanghun (Team of Climate Change Research, National Institute of Ecology)
  • 투고 : 2020.08.12
  • 심사 : 2020.11.30
  • 발행 : 2020.12.31

초록

매년 반복되는 식물의 생활사를 장기적으로 관측하는 것은 기후변화 반응을 감지하는데 있어 가장 단순한 방법이며, 중요한 지표로 인식되고 있다. 반복 디지털 이미지를 이용한 식물계절 변화 관찰 방법은 전통적(현장에서 전문가에 의해 관찰) 방법과 위성원격탐사(위성영상의 식생지수를 활용한 위성원격 관찰)의 한계를 보완한 방법이다. 본 연구는 디지털 카메라를 기반으로 한 반복 이미지로부터 식물계절 변화 관측과 계절현상을 정량화하기 위하여 점봉산 산림생태계를 대상으로 하였다. 한반도 전역에 분포하는 신갈나무림(낙엽활엽수림)과 상록침엽수림의 대표 수종인 소나무를 선정하여 식물계절 특성에 따른 경향성을 파악하고자 하였다. RGB 채널 이미지 데이터로부터 식생지수(Gcc)를 산출하였다. Gcc 진폭의 크기는 상록침엽수림이 낙엽활엽수림 보다 작았으며, Gcc의 기울기(봄철 증가와 가을철 감소)는 상록침엽수림이 낙엽활엽수림과 비교하여 완만하였다. 소나무림은 생장의 시작(UD)이 신갈나무림에 보다 빨랐고, 생장의 종료(RD)는 늦은 것으로 나타났다. 식물계절 현상의 정확도 검증은 RMSE가 0.008(ROI1)과 0.006(ROI3)으로 높은 정확도를 보였다. 이러한 결과는 온대북부형 낙엽활엽수림의 Gcc 궤적의 경향성을 잘 반영하였으며, 디지털 카메라를 이용한 반복 이미지 관측 방법이 식물계절 변화 관측에 있어 유용할 것으로 판단된다.

Long-term observation of the life cycle of plants allows the identification of critical signals of the effects of climate change on plants. Indeed, plant phenology is the simplest approach to detect climate change. Observation of seasonal changes in plants using digital repeat imaging helps in overcoming the limitations of both traditional methods and satellite remote sensing. In this study, we demonstrate the utility of camera-based repeat digital imaging in this context. We observed the biological events of plants and quantified their phenophases in the northern temperate type deciduous broadleaf forest of Jeombong Mountain. This study aimed to identify trends in seasonal characteristics of Quercus mongolica (deciduous broadleaf forest) and Pinus densiflora (evergreen coniferous forest). The vegetation index, green chromatic coordinate (GCC), was calculated from the RGB channel image data. The magnitude of the GCC amplitude was smaller in the evergreen coniferous forest than in the deciduous forest. The slope of the GCC (increased in spring and decreased in autumn) was moderate in the evergreen coniferous forest compared with that in the deciduous forest. In the pine forest, the beginning of growth occurred earlier than that in the red oak forest, whereas the end of growth was later. Verification of the accuracy of the phenophases showed high accuracy with root-mean-square error (RMSE) values of 0.008 (region of interest [ROI]1) and 0.006 (ROI3). These results reflect the tendency of the GCC trajectory in a northern temperate type deciduous broadleaf forest. Based on the results, we propose that repeat imaging using digital cameras will be useful for the observation of phenophases.

키워드

참고문헌

  1. Ahas, R. and Aasa, A. 2006. The effects of climate change on the phenology of selected Estonian plant, bird and fish populations. International Journal of Biometeorology 51(1): 17-26. https://doi.org/10.1007/s00484-006-0041-z
  2. Ahrends, H.E., Etzold, S., Kutsch, W.L., Stockli, R., Brügger, R., Jeanneret, F., Wanner, H., Buchmann, N. and Eugster, W. 2009. Tree phenology and carbon dioxide fluxes: use of digital photography for process-based interpretation at the ecosystem scale. Climate Research 39(3): 261-274. https://doi.org/10.3354/cr00811
  3. Alberton, B., Almeida, J. Helm, R. Torres, R.S., Menzel, A. and Morellato, L.P. 2014. Using phenological cameras to track the green up in a cerrado savanna and its on-theground validation. Ecological Informatics 19: 62-70. https://doi.org/10.1016/j.ecoinf.2013.12.011
  4. Alberton, B., Torres, R.S., Cancian, L.F., Borges, B.D., Almeida, J., Mariano, G.C., Santos, J. and Morellato, L.P.C. 2017. Introducing digital cameras to monitor plant phenology in the tropics: applications for conservation. Perspectives in Ecology and Conservation 15(2): 82-90. https://doi.org/10.1016/j.pecon.2017.06.004
  5. Baghzouz, M., Devitt, D.A., Fenstermaker, L.F. and Young, M.H. 2010. Monitoring vegetation phenological cycles in two different semi-arid environmental settings using a ground-based NDVI system: A potential approach to improve satellite data interpretation. Remote Sensing 2(4): 990-1013. https://doi.org/10.3390/rs2040990
  6. Brown, T.B., Hultine, K.R., Steltzer, H., Denny, E.G., Denslow, M.W., Granados, J., Henderson, S., Moore, D., Nagai, S. and SanClements, M. 2016. Using phenocams to monitor our changing Earth: toward a global phenocam network. Frontiers in Ecology and the Environment 14(2): 84-93. https://doi.org/10.1002/fee.1222
  7. Chai, T. and Draxler, R.R. 2014. Root mean square error (RMSE) or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature. Geoscientific Model development 7(3): 1247-1250. https://doi.org/10.5194/gmd-7-1247-2014
  8. Choi, C.H., Jung, S.G. and Park, K.H. 2016. Analysing relationship between satellite-based plant phenology and temperature. Journal of the Korean Association of Geographic Information Studies 19(1): 30-42. https://doi.org/10.11108/kagis.2016.19.1.030
  9. Crick, H.Q., Dudley, C., Glue, D.E. and Thomson, D.L. 1997. UK birds are laying eggs earlier. Nature 388(6642): 526-526.
  10. Filippa, G., Cremonese, E., Galvagno, M., Migliavacca, M., Di Cella, U.M., Petey, M. and Siniscalco, C. 2015. Five years of phenological monitoring in a mountain grassland: inter-annual patterns and evaluation of the sampling protocol. International journal of biometeorology 59(12): 1927-1937. https://doi.org/10.1007/s00484-015-0999-5
  11. Fisher, J.I., Mustard, J.F. and Vadeboncoeur, M.A. Green leaf phenology at Landsat resolution: Scaling from the field to the satellite. Remote Sensing of Environment 100(2): 265-279. https://doi.org/10.1016/j.rse.2005.10.022
  12. Garrity, S.R., Vierling, L.A. and Bickford, K. 2010. A simple filtered photodiode instrument for continuous measurement of narrowband NDVI and PRI over vegetated canopies. Agricultural and Forest Meteorology 150(3): 489-496. https://doi.org/10.1016/j.agrformet.2010.01.004
  13. Graham, E.A., Riordan, E.C., Yuen, E.M., Estrin, D. and Rundel, P.W. 2010. Public Internet-connected cameras used as a cross-continental ground-based plant phenology monitoring system. Global Change Biology 16(11): 3014-3023. https://doi.org/10.1111/j.1365-2486.2010.02164.x
  14. Gu, L., Post, W.M., Baldocchi, D.D., Black, T.A., Suyker, A.E., Verma, S.B, Vesala, T. and Wofsy, S.C. 2009. Characterizing the seasonal dynamics of plant community photosynthesis across a range of vegetation types. Phenology of Ecosystem Processes. Springer 35-58.
  15. Hufkens, K., Filippa, G., Cremonese, E., Migliavacca, M., D'Odorico, P., Peichl, M., Gielen, B., Hortnagl, L., Soudani, K., Papale, D., Rebmann, C., Brown, T. and Wingate, L. 2018. Assimilating phenology datasets automatically across ICOS ecosystem stations. Agricultural and Forest Meteorology 249: 275-285. https://doi.org/10.1016/j.agrformet.2017.11.003
  16. Ide, R. and Oguma, H. 2010. Use of digital cameras for phenological observations. Ecological Informatics 5(5): 339-347. https://doi.org/10.1016/j.ecoinf.2010.07.002
  17. IPCC (Intergovernmental Panel on Climate Change). 2018. Summary for Policymakers. In: Global Warming of 1.5℃. World Meteorological Organization. Switzerland pp. 32.
  18. Jang, J.G., Yoo, S.T., Kim, B.D., Son, S.W. and Yi, M.H. 2020. The Relationship Between Temperature and Spring Phytophenological Index. Korean Journal of Plant Resources 33(2): 106-115.
  19. Jin, Y.H., Zhu, J.R., Sung, S.Y. and Lee, D.K. 2017. Application of satellite data spatiotemporal fusion in predicting seasonal NDVI. Korean Journal of Remote Sensing 33(2): 149-158. https://doi.org/10.7780/kjrs.2017.33.2.4
  20. Kim, H.J., Hong, J.K., Kim, S.C., Oh, S.H. and Kim, J.H. 2011. Plnat phenology of threatened species for climate change in sub-alpine zone of Korea. Korea Journal of Plant Resources 24(5): 549-556. https://doi.org/10.7732/kjpr.2011.24.5.549
  21. Kim, H.W. 2019. Changes of the flowering time of tree in spring by climate change in Seoul, South Korea. Seoul. Ewha Womans University.
  22. Kurc, S.A. and Benton, L.M. 2010. Digital image-derived greenness links deep soil moisture to carbon uptake in a creosotebush-dominated shrubland. Journal of Arid Environments 74(5): 585-594. https://doi.org/10.1016/j.jaridenv.2009.10.003
  23. Lee, B.R., Kim, E.S., Lee, J.S., Chung, J.M. and Lim, J.H. 2018. Detecting phenology using MODIS vegetation indices and forest type map in South Korea. Korean Journal of Remote Sensing 34(2-1): 267-282. https://doi.org/10.7780/KJRS.2018.34.2.1.9
  24. Lee, K.M., Kwon, W.T. and Lee, S.H. 2009. A study on plant phenological trends in South Korea. Journal of The Koraen Association of Regional Geographers 15(2): 337-350.
  25. Menzel, A. 2000. Trends in phenological phases in Europe between 1951 and 1996. International Journal of Bio-meteorology 44(2): 76-81. https://doi.org/10.1007/s004840000054
  26. Migliavacca, M., Galvagno, M., Cremonese, E., Rossini, M., Meroni, M., Sonnentag, O., Cogliati, S., Manca, G., Diotri, F. and Busetto, L. 2011. Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake. Agricultural and Forest Meteorology 151(10): 1325-1337. https://doi.org/10.1016/j.agrformet.2011.05.012
  27. Morellato, L.P.C., Alberton, B., Alvarado, S.T., Borges, B., Buisson, E., Camargo, M.G.G., Cancian, L.F., Carstensen, D.W., Escobar, D.F. and Leite, P.T. 2016. Linking plant phenology to conservation biology. Biological Conservation 195: 60-72. https://doi.org/10.1016/j.biocon.2015.12.033
  28. Morisette, J.T., Richardson, A.D., Knapp, A.K., Fisher, J.I., Graham, E.A., Abatzoglou J., Wilson, B.E., Breshears, D.D., Henebry, G.M., Hanes, J.M. and Liang, L. 2008. Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century. Frontiers in Ecology and the Environment 7(5): 253-260. https://doi.org/10.1890/070217
  29. Moulin, S., Kergoat, L., Viovy, N. and Dedieu, G. 1997. GlobalScale Assessment of Vegetation Phenology Using NOAA/AVHRR Satellite Measurements. Journal of Climate 10(6): 1154-1170. https://doi.org/10.1175/1520-0442(1997)010<1154:GSAOVP>2.0.CO;2
  30. Parry, M.L., Canziani, O.F., Palutikof, J.P., Linden, P.J. and Hanson, C.E. 2007. Climate Change 2007: Impacts, Adaptation, and Vulnerability. Cambridge University Press pp. 939.
  31. Pau, S., Wolkovich, E.M., Cook, B.I., Davies, T.J., Kraft, N.J.B., Bolmgren, K., Betancourt, J.L. and Cleland, E.E. 2011. Predicting phenology by integrating ecology, evolution and climate science. Global Change Biology 17(12): 3633-3643. https://doi.org/10.1111/j.1365-2486.2011.02515.x
  32. Petach, A.R., Toomey, M., Aubrecht, D.M. and Richardson, A.D. 2014. Monitoring vegetation phenology using an infrared-enabled security camera. Agricultural and forest meteorology 195: 143-151. https://doi.org/10.1016/j.agrformet.2014.05.008
  33. Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.M., Tucker, C.J. and Stenseth, N.C. 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution 20(9): 503-510. https://doi.org/10.1016/j.tree.2005.05.011
  34. Polgar, C.A. and Primack, R.B. 2011. Leaf‐out phenology of temperate woody plants: from trees to ecosystems. New Phytologist 191(4): 926-941. https://doi.org/10.1111/j.1469-8137.2011.03803.x
  35. R-Forge Phenopix. https://r-forge.r-project.org/projects/phenopi/. (2020.06.04.).
  36. Richardson, A.D. 2019. Tracking seasonal rhythms of plants in diverse ecosystems with digital camera imagery. New Phytologist 222(4): 1742-1750. https://doi.org/10.1111/nph.15591
  37. Richardson, A.D., Braswell, B.H., Hollinger, D.Y., Jenkins, J.P. and Ollinger, S.V. 2009. Near‐surface remote sensing of spatial and temporal variation in canopy phenology. Ecological Applications 19(6): 1417-1428. https://doi.org/10.1890/08-2022.1
  38. Richardson, A.D., Jenkins, J.P., Braswell, B.H., Hollinger, D.Y., Ollinger, S.V. and Smith, M.L. 2007. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia 152(2): 323-334. https://doi.org/10.1007/s00442-006-0657-z
  39. Richardson, A.D., Keenan, T.F., Migliavacca, M., Ryu, Y., Sonnentag, O. and Toomey, M. 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology 169: 156-173. https://doi.org/10.1016/j.agrformet.2012.09.012
  40. Ryu, Y., Baldocchi, D.D., Verfaillie, J., Ma, S., Falk, M., Ruiz-Mercado, I., Hehn, T. and Sonnentag, O. 2010. Testing the performance of a novel spectral reflectance sensor, built with light emitting diodes (LEDs), to monitor ecosystem metabolism, structure and function. Agricultural and Forest Meteorology 150(12): 1597-1606. https://doi.org/10.1016/j.agrformet.2010.08.009
  41. Scrantona, K. and Amarasekarea, P. 2017. Predicting phenological shifts in a changing climate. Proceedings of the National Academy of Sciences of the United States of America 114(50): 13212-13217. https://doi.org/10.1073/pnas.1711221114
  42. Snyder, K.A., Wehan, B.L., Filippa, G., Huntington, J.L., Stringham, T.K. and Snyder, D.K. 2016. Extracting plant phenology metrics in a great basin watershed: Methods and considerations for quantifying phenophases in a cold desert. Sensors 16(11): 1948. https://doi.org/10.3390/s16111948
  43. Sonnentag, O. Detto, M., Vargas, R., Ryu, Y., Runkle, B.R.K., Kelly, M. and Baldocchi, D.D. 2011. Tracking the structural and functional development of a perennial pepper-weed (Lepidium latifolium L.) infestation using a multiyear archive of webcam imagery and eddy covariance measurements. Agricultural and Forest Meteorology 151(7): 916-926. https://doi.org/10.1016/j.agrformet.2011.02.011
  44. Sonnentag, O., Hufkens, K., Teshera-Sterne, C., Young, A.M., Friedl, M., Braswell, B.H., Milliman, T., O'Keefe, J. and Richardson, A.D. 2012. Digital repeat photography for phenological research in forest ecosystems. Agricultural and Forest Meteorology 152: 159-177. https://doi.org/10.1016/j.agrformet.2011.09.009
  45. Tan B., Morisette J.T., Wolfe, R.E., Gao, F., Ederer, G.A., Nightingale, J. and Pedelty, J.P. 2011. An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 4(2): 361-371. https://doi.org/10.1109/JSTARS.2010.2075916
  46. Tooke F. and Battey, N.H. 2010. Temperate flowering phenology. Journal of Experimental Botany 61(11): 2853-2862. https://doi.org/10.1093/jxb/erq165
  47. Toomey, M., Friedl, M.A., Frolking, S., Hufkens, K., Klosterman, S., Sonnentag, O., Baldocchi, D.D., Bernacchi, C.J., Biraud, S.C. and Bohrer, G. 2015. Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy-scale photosynthesis. Ecological Applications 25(1): 99-115. https://doi.org/10.1890/14-0005.1
  48. Ulsig, L., Nichol, Caroline J., Huemmrich, K.F., Landis, D.R., Middleton, E.M., Lyapustin, A.I., Mammarella, I., Levula, J. and Porcar-Castell, A. 2017. Detecting inter-annual variations in the phenology of evergreen conifers using long-term MODIS vegetation index time series. Remote sensing 9(1): 49. https://doi.org/10.3390/rs9010049
  49. Wald, L. 2002. Data fusion: definitions and architectures: fusion of images of different spatial resolutions. Les Presses del'E cole des Mines. Paris. pp. 198.
  50. Whitfield, J. 2001. The budding amateurs. Nature 414: 578-579. https://doi.org/10.1038/414578a
  51. WMO (World Meteorological Organization). 2019. WMO statement on the state of the global climate in 2019. WMO-No. 1248: 1-44.
  52. Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., Hodges, J.C.F., Gao, F., Reed, B.C. and Huete, A. 2003. Monitoring vegetation phenology using MODIS. Remote Sensing of Environment 84(3): 471-475. https://doi.org/10.1016/S0034-4257(02)00135-9