DOI QR코드

DOI QR Code

Effect of MgF2 Surface Modification for LiNi0.8Co0.15Al0.05O2 Cathode Material on Improving Electrochemical Characteristics

LiNi0.8Co0.15Al0.05O2 양극활물질의 전기화학적 특성 향상을 위한 MgF2 표면처리 효과

  • Jin, Su-Jin (Department of Chemical Engineering, Chungbuk National University) ;
  • Seo, Jin-Seong (Department of Chemical Engineering, Chungbuk National University) ;
  • Na, Byung-Ki (Department of Chemical Engineering, Chungbuk National University)
  • 진수진 (충북대학교 화학공학과) ;
  • 서진성 (충북대학교 화학공학과) ;
  • 나병기 (충북대학교 화학공학과)
  • Received : 2019.10.08
  • Accepted : 2020.01.12
  • Published : 2020.02.01

Abstract

Electrochemical characterization and thermal stability were investigated for MgF2 coated LiNi0.8Co0.15Al0.05O2 cathode. The ratio of MgF2 was controlled by 0.5, 1, 3 wt%. Cyclic voltammetry, charge-discharge profiles, rate capability, cycle life were measured for electrochemical properties. DSC analysis was measured for thermal stability. The first discharge capacities of MgF2 coated LiNi0.8Co0.15Al0.05O2 were decreased at 0.1C-rate compared to pristine LiNi0.8Co0.15Al0.05O2. But the rate capability and cycle life of MgF2 coated LiNi0.8Co0.15Al0.05O2 were improved at 2C-rate. In DSC analysis result, the exothermic temperature of MgF2 coated LiNi0.8Co0.15Al0.05O2 was increased and peak height was decreased.

본 연구에서는 MgF2를 이용하여 LiNi0.8Co0.15Al0.05O2 양극활물질의 표면을 코팅하여 전기화학적 특성과 열적 안정성을 평가하였다. 코팅된 MgF2의 비율은 0.5, 1, 3 wt%로 조절하였다. 전기화학적 특성은 CV, 충·방전 프로파일, 출력특성, 수명특성을 분석하였고, 열적 안정성은 DSC 분석을 통하여 이루어졌다. 전기화학적 특성 분석 결과 0.1C에서 초기 방전 용량은 MgF2 코팅이 되었을 때 감소하였지만, 2C까지 출력을 향상 시켰을 때는 약간 향상된 방전 용량을 얻을 수 있었고, 수명특성 또한 향상되었다. 또한 DSC 분석 결과 코팅이 되었을 때 발열 온도가 증가하였고, 발열 피크의 세기 또한 감소하였다.

Keywords

References

  1. Zang, Q., Liu, K., Ding, F., Li, W., Liu, X. and Zhang, J., "Enhancing the High Voltage Interface Compatibility of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ in the Succinonitrile-based Electrolyte," Electrochim. Acta, 298, 818-826(2019). https://doi.org/10.1016/j.electacta.2018.12.104
  2. Liang, H., Wang, Z., Guo, H., Wang, J. and Leng, J., "Improvement in the Electrochemical Performance of $LiNi_{0.8}Co_{0.1}Mn_{0.1}O_2$ Cathode Material by $Li_2ZrO_3$ Coating," Appl. Surf. Sci., 423, 1045-1053(2017). https://doi.org/10.1016/j.apsusc.2017.06.283
  3. Park, H. R., "Electrochemical Properties of $LiNiO_2$ and $LiNiO_2$ Substituted with Ga, Al and/or Ti," J. Ind. Eng. Chem., 16, 698-702(2010). https://doi.org/10.1016/j.jiec.2010.07.016
  4. Park, S. H., Park, K. S., Cho, M. H., Sun, Y. K., Nahm, K. S., Lee, Y. S. and Yoshio, M., "The Effects of Oxygen Flow Rate and Anion Doping on the Performance of the $LiNiO_2$ Electrode for Lithium Secondary Batteries," Korean J. Chem. Eng., 19(5), 791-796(2002). https://doi.org/10.1007/BF02706969
  5. Li, C., Zhang, H. P., Fu, L. J., Liu, H., Wu, Y. P., Rahm, E., Holze, R. and Wu, H. Q., "Cathode Materials Modified by Surface Coating for Lithium Ion Batteries," Electrocim. Acta, 51, 3872-3883(2006). https://doi.org/10.1016/j.electacta.2005.11.015
  6. Hu, G., Liu, W., Peng, Z., Du, K. and Cao, Y., "Synthesis and Electrochemical Properties of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ Prepared from the Precursor $Ni_{0.8}Co_{0.15}Al_{0.05}OOH$," J. Power Sources, 198, 258-263 (2012). https://doi.org/10.1016/j.jpowsour.2011.09.101
  7. Zhong, S. W., Zhao, Y. J., Lian, F., Li, Y., Hu, Y., Li, P. Z., Mei, J. and Liu, Q. G., "Characteristic and Electrochemical Performance of Cathode Material Co-coated $LiNiO_2$ for Li-ion Batteries," Trans. Nonferrous Met. Soc. China, 16, 137-141(2006). https://doi.org/10.1016/S1003-6326(06)60024-1
  8. Deng, X. R., Hu, G. R., Du, K. P., Zhong, D., Gao, X. G., Xu, G. and Yang, Y. N., "Synthesis and Electrochemical Properties of Co, Mn-coated $LiNiO_2$ Lithium-ion Battery Cathode Materials," Mater. Chem. Phys., 109, 469-474(2008). https://doi.org/10.1016/j.matchemphys.2007.12.025
  9. Wu, S. H. and Yang, C. W., "Preparation of $LiNi_{0.8}Co_{0.2}O_2$-based Cathode Materials for Lithium Batteries by a co-precipitation Method," J. Power Sources, 146, 270-274(2005). https://doi.org/10.1016/j.jpowsour.2005.03.027
  10. Zhang, L., Noguchi, H., Li, D., Muta, T., Wang, X., Yoshio, M. and Taniguchi, I., "Synthesis and Electrochemistry of Cubic Rocksalt Li-Ni-Ti-O Compounds in the Phase Diagram of $LiNiO_2$-$LiTiO_2$-$Li[Li_{1/3}Ti_{2/3}]O_2$," J. Power Sources, 185, 534-541(2008). https://doi.org/10.1016/j.jpowsour.2008.06.054
  11. Kim, H. U., Song, J. H., Mumm, D. R. and Song, M. Y., "Effects of Zn or Ti Substitution for Ni on the Electrochemical Properties of $LiNiO_2$," Ceram. Int., 37, 779-782(2011). https://doi.org/10.1016/j.ceramint.2010.10.021
  12. Song, M. Y., Kwon, I. H., Shim, S. B. and Song, J. H., "Electrochemical Characterizations of Fe-substituted $LiNiO_2$ Synthesized in air by the Combustion Method," Ceram. Int., 36, 1225-1231(2010). https://doi.org/10.1016/j.ceramint.2010.01.008
  13. Cui, P., Jia, Z. J., Li, L. Y. and He, T., "Preparation and Characteristic of Sb-doped $LiNiO_{2}$ Cathode Materials for Li-ion Batteries," J. Phys. Chem. Solids, 72, 899-903(2011). https://doi.org/10.1016/j.jpcs.2011.04.013
  14. Muto, S., Tatsumi, K., Kojima, Y., Oka, H., Kondo, H., Horibuchi, K. and Ukyo, Y., "Effect of Mg-doping on the Degradation of $LiNiO_2$-based Cathode Materials by Combined Spectroscopic Methods," J. Power Sources, 205, 449-455(2012). https://doi.org/10.1016/j.jpowsour.2012.01.071
  15. Zhang, L., Noguchi, H. and Yoshio, M., "Synthesis and Electrochemical Properties of Layered Li-Ni-Mn-O Compounds," J. Power Sources, 110, 57-64(2002). https://doi.org/10.1016/S0378-7753(02)00169-6
  16. Cho, Y. H. and Cho, J. P., "Significant Improvement of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ Cathodes at $60^{\circ}C$ by $SiO_2$ Dry Coating for Li-ion Batteries," J. Electrochem. Soc., 157, A625-A629(2010). https://doi.org/10.1149/1.3363852
  17. Chung, Y. M. and Ryu, K. S., "Surface Coating and Electrochemical Properties of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$/polyaniline Composites as an Electrode for Li-ion Batteries," Bull. Korean Chem. Soc., 30(8), 1733-1737(2009). https://doi.org/10.5012/bkcs.2009.30.8.1733
  18. Chung, Y. M., Ryu, S. H., Ju, J. H., Bak, Y. R., Hwang, M. J., Kim, K. W., Cho, K. K. and Ryu, K. S., "A Surfactant-base Method for Carbon Coating of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ Cathode in Li Ion Batteries," Bull. Korean Chem. Soc., 31(8), 2304-2308(2010). https://doi.org/10.5012/bkcs.2010.31.8.2304
  19. Ryu, J. H., Kim, S. B. and Park, Y. J., "The Effect of Surface Modification with La-M-O (M=Ni, Li) on Electrochemical Performances of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ Cathode," Bull. Korean Chem. Soc, 30(3), 657-660(2009). https://doi.org/10.5012/bkcs.2009.30.3.657
  20. Park, B. C., Kim, H. B., Bang, H. J., Prakash, J. and Sun, Y. K., "Improvement of Electrochemical Performance of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ Cathode Materials by $AlF_3$ Coating at Various Temperatures," Ind. Eng. Chem. Res., 47, 3876-3882(2008). https://doi.org/10.1021/ie0715308
  21. Hu, S. K., Cheng, G. H., Cheng, M. Y., Hwang, B. J. and Santhanam, R., "Cycle Life Improvement of $ZrO_2$-coated Spherical $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode Material for Lithium Ion Batteries," J. Power Sources, 188, 564-569(2009). https://doi.org/10.1016/j.jpowsour.2008.11.113
  22. Wang, Y. P., Wang, X. Y., Yang, S., Shu, H. B., Wei, Q., Wu, Q., Bai, Y. and Hu, B., "Effect of $MgF_2$ Coating on the Electrochemical Performance of $LiMn_2O_4$ Cathode Materials," J. Solid State Electr., 16, 2913-2920(2012). https://doi.org/10.1007/s10008-012-1723-6
  23. Wang, F. Y., Zhu, Y. F., Jiang, Y. and Zhang, E. P., "Fabrication and Properties of $MgF_2$ Composite Film Modified with Carbon Nanotubes," J. Sol-Gel Sci. Techn., 58, 587-593(2011). https://doi.org/10.1007/s10971-011-2431-x
  24. Fujihara, S., Tada, M. and Kimura, T., "Preparation and Characterization of $MgF_2$ Thin Film by a Trifluoroacetic Acid Method," Thin Solid Films, 304, 252-255(1997). https://doi.org/10.1016/S0040-6090(97)00156-9
  25. Majumder, S. B., Nieto, S. and Katiyar, R. S., "Synthesis and Electrochemical Properties of $LiNi_{0.80}(Co_{0.20-x}Al_x)O_2$ (x=0.0 and 0.05) Cathodes for Li Ion Rechargeable Batteries," J. Power Sources, 154, 262-267(2006). https://doi.org/10.1016/j.jpowsour.2005.03.186