DOI QR코드

DOI QR Code

페로브스카이트 태양전지 안정성 개선을 위한 광활성층 연구 현황과 전망

Future Prospect of Perovskite Solar Cells for Practical Applications

  • 송재관 (전남대학교 화학공학부) ;
  • 김도형 (전남대학교 화학공학부)
  • 투고 : 2019.10.27
  • 심사 : 2019.12.13
  • 발행 : 2020.02.01

초록

화석 연료를 이용하는 에너지원이 심각한 환경오염을 일으키고, 인류의 건강한 삶에 큰 영향을 주어 청정한 에너지 자원의 개발은 매우 중요한 이슈가 되었다. 화석 연료를 대체하기 위한 다양한 에너지원의 개발이 진행되고 있으며, 그 중 최근에는 태양 전지에 대한 관심이 점차 커지고 있다. 현재 실용화 되어 있는 태양전지는 실리콘 기반 태양전지인데, 제조비용이 큰 단점이 부각되고 있으며 이에 따라 이의 단점을 개선하기 위한 노력과 동시에 실리콘 기반 태양전지를 대체하려는 시도가 이루어지고 있다. 이중 실리콘 기반 태양전지를 대체할 후보로 페로브스카이트 태양전지가 큰 관심을 받고 있는데, 그 이유는 높은 광전 변환 효율, 저렴한 제조비용, 유연한 형태로의 제조 가능성 때문이다. 그러나 현재 보고되고 있는 페로브스카이트 태양전지는 장기적 안정성이 떨어지며, 또 납으로 인해 신체에 유해하다는 큰 단점을 가지고 있다. 본 리뷰에서는 페로브스카이트 태양전지의 장기적 안정성을 높이는 방안들 그리고 환경적으로 유해한 납을 사용하지 않는 방안들의 최신 연구 방향 동향에 관하여 살펴보았다.

Development of efficient methods for clean energy production became a critical issue to improve the quality of human lives. Solar cells is considered as one of the alternative solutions to resolve the issue. Although Si-based solar cells are only popularly utilized for practical applications, high manufacturing cost is considered as a serious drawback for further versatile applications. Thus, different types of are being investigated aiming to replace the Si-based solar cells. Recently, perovskite solar cells (PSC) are considered as a potential replacement for Si-based solar cells due to their low production cost, high power conversion efficiency, light weight and possibility of flexible device fabrication. Thus, we have reviewed the challenges of PSC faced with practical application, particularly on stability.

키워드

참고문헌

  1. Jo, W., Choi, H., Kim, S., Yoo, J., Chun, D., Rhim, Y., Lim, J. and Lee, S., "Changes in Spontaneous Combustion Characteristics of Low-rank Coal Through Pre-oxidation at Low Temperatures," Korean J. Chem. Eng., 32, 255-260(2015). https://doi.org/10.1007/s11814-014-0228-7
  2. Kim, B. S., Kim, T. Y., Park, T. C. and Yeo, Y. K., "Comparative Study of Estimation Methods of NOx Emission with Selection of Input Parameters for a Coal-fired Boiler," Korean J. Chem. Eng., 35, 1779-1790(2018). https://doi.org/10.1007/s11814-018-0087-8
  3. Lu, Q., Ali, Z., Tang, H., Iqbal, T., Arain, Z., Cui, M.-S., Liu, D.-J., Li, W.-Y. and Yang, Y.-P., "Regeneration of Commercial SCR Catalyst Deactivated by Arsenic Poisoning in Coal-fired Power Plants," Korean J. Chem. Eng., 36, 377-384(2019). https://doi.org/10.1007/s11814-018-0227-9
  4. Kim, M., Ye, and Ryu, C., "Effect of Slag Viscosity Model on Transient Simulations of Wall Slag Flow in An Entrained Coal Gasifier," Korean J. Chem. Eng., 35, 1065-1072(2018). https://doi.org/10.1007/s11814-018-0008-x
  5. Yang, F., Yu, Q., Xie, H., Zuo, Z., Hou, L. and Qin, Q., "Comparative Kinetic Study of Coal Gasification with Steam and CO2 in Molten Blast Furnace Slags," Korean J. Chem. Eng., 35, 1626-1635(2018). https://doi.org/10.1007/s11814-018-0076-y
  6. Barati, S., Ghazi, M. M. and Khoshandam, B., "Study of Effective Parameters for the Polarization Characterization of PEMFCs Sensitivity Analysis and Numerical Simulation," Korean J. Chem. Eng., 36, 146-156(2019). https://doi.org/10.1007/s11814-018-0178-6
  7. Joo, D., Han, K., Jang, J. H. and Park, S., "In situ Electrochemical and Mechanical Accelerated Stress Tests of a Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells," Korean J. Chem. Eng., 36, 299-304(2019). https://doi.org/10.1007/s11814-019-0223-0
  8. Park, K., Oh, S.-R. and Won, W., "Techno-economic Optimization of the Integration of An Organic Rankine Cycle Into a Molten Carbonate Fuel Cell Power Plant," Korean J. Chem. Eng., 36, 345-355(2019). https://doi.org/10.1007/s11814-018-0210-x
  9. Ko, H. S., Park, H. W., Kim, G. J. and Lee, J. D., "Electrochemical Characteristics of Lithium-excess Cathode Material ($Li_{1+x}Ni_{0.9} Co_{0.05}Ti_{0.05}O_2$) for Lithium-ion Batteries," Korean J. Chem. Eng., 36, 620-624(2019). https://doi.org/10.1007/s11814-019-0248-4
  10. Chu, C., Kwon, B. W., Lee, W. and Kwon, Y., "Effect of Temperature on the Performance of Aqueous Redox Flow Battery Using Carboxylic Acid Functionalized Alloxazine and Ferrocyanide Redox Couple," Korean J. Chem. Eng., 36, 1372-1379(2019).
  11. Wang, X., Kim, J. H., Choi, Y. B., Kim, H.-H. and Kim, C.-J., "Fabrication of Optimally Configured Layers of SWCNTs, Gold Nanoparticles, and Glucose Oxidase on ITO Electrodes for High-power Enzymatic Biofuel Cells," Korean J. Chem. Eng., 36, 1172-1183(2019). https://doi.org/10.1007/s11814-019-0278-y
  12. Yoo, H. M., Lee, J. S., Yang, W. S., Choi, H. S., Jang, H. N. and Seo, Y. C., "Co-gasification Characteristics of Palm Oil by-products and Coals for Syngas Production," Korean J. Chem. Eng., 35, 654-661(2018). https://doi.org/10.1007/s11814-017-0312-x
  13. Kim, H., Nam, S., Jeong, J., Lee, S., Seo, J., Han, H. and Kim, Y., "Organic Solar Cells Based on Conjugated Polymers : History and Recent Advances," Korean J. Chem. Eng., 31, 1095-1104(2014). https://doi.org/10.1007/s11814-014-0154-8
  14. Berhe, T. A., Su, W. N., Chen, C. H., Pan, C. J., Cheng, J. H., Chen, H. M., Tsai, M. C., Chen, L. Y., Dubale, A. A. and Hwang, B. J., "Organometal Halide Perovskite Solar Cells: Degradation and Stability," Energy Environ. Sci., 9, 323(2016). https://doi.org/10.1039/C5EE02733K
  15. Yoo, I. H., Kalanur, S. S., Eom, K., Ahn, B., Cho, I. S., Yu, H. K., Jeon, H. and Seo, H., "Plasmon-enhanced ZnO Nanorod/AuNPs/$Cu_2O$ Structure Solar Cells: Effects and Limitations," Korean J. Chem. Eng., 34, 3200-3207(2017). https://doi.org/10.1007/s11814-017-0222-y
  16. Zafar, M., Yun, J. Y. and Kim, D. H., "Highly Stable Inverted Organic Photovoltaic Cells with a $V_2O_5$ Hole Transport Layer," Korean J. Chem. Eng., 34, 1504-1508(2017). https://doi.org/10.1007/s11814-017-0043-z
  17. Cho, H. H., Cho, C. H., Kang, H., Yu, H., Oh, J. H. and Kim, B. J., "Molecular Structure-device Performance Relationship in Polymer Solar Cells Based on Indene-C60 Bis-adduct Derivatives," Korean J. Chem. Eng., 32, 261-267(2015). https://doi.org/10.1007/s11814-014-0220-2
  18. Zafar, M., Yun, J. Y. and Kim, D. H., "Performance of Inverted Organic Photovoltaic Cells with Nitrogen Doped $TiO_2$ Films by Atomic Layer Deposition," Korean J. Chem. Eng., 35, 567-573 (2018). https://doi.org/10.1007/s11814-017-0285-9
  19. Lee, S., Seo, J., Kim, H., Song, D. I. and Kim, Y., "Investigation of Short-term Stability in High Efficiency Polymer: Nonfullerene Solar Cells Via Quick Current-voltage Cycling Method," Korean J. Chem. Eng., 35, 2496-2503(2018). https://doi.org/10.1007/s11814-018-0154-1
  20. Meng, L., Zhang, Y., Wan, X., Li, C., Zhang, X., Wang, Y., Ke, X., Xiao, Z., Ding, L., Xia, R., Yip, H. L., Cao, Y. and Chen, Y., "Investigation of Short-term Stability in High Efficiency Polymer: Nonfullerene Solar Cells via Quick Current-voltage Cycling Method," Science 361, 1094-1098(2018). https://doi.org/10.1126/science.aat2612
  21. Zheng, J., Lau, C. F. J., Mehrvarz, H., Ma, F. J., Jiang, Y., Deng, X., Soeriyadi, A., Kim, J., Zhang, M., Hu, L., Cui, X., Lee, D. S., Bing, J., Cho, Y., Chen, C., Green, M. A., Huang, S., A and Ho-Baillie, W. Y., "Large Area Efficient Interface Layer Free Monolithic Perovskite/homo-junction-silicon Tandem Solar Cell with over 20% Efficiency," Energy Environ. Sci., 11, 2432(2018). https://doi.org/10.1039/C8EE00689J
  22. Quiroz, C. O. R., Shen, Y., Salvador, M., Forberich, K., Schrenker, N., Spyropoulos, G. D., Heumüller, T., Wilkinson, B., Kirchartz, T., Spiecker, E., Verlinden, P. J., Zhang, X., Green, M. A., Ho-Baillie, A. and Brabec, C. J., "Balancing Electrical and Optical Losses for Efficient 4-terminal Si-perovskite Solar Cells with Solution Processed Percolation Electrodes," J. Mater. Chem. A, 6, 3583(2018). https://doi.org/10.1039/C7TA10945H
  23. Kim, J. Y., Lee, K., Coates, N. E., Moses, D., Nguyen, T. Q., Dante, M. and Heeger, A. J., "Efficient Tandem Polymer Solar Cells Fabricated by All-solution Processing," Science, 317, 222-225(2007). https://doi.org/10.1126/science.1141711
  24. You, J., Dou, L., Yoshimura, K., Kato, T., Ohya, K., Moriarty, T., Emery, K., Chen, C. C., Gao, J., Li, G. and Yang, Y., "A Polymer Tandem Solar Cell with 10.6% Power Conversion Efficiency," Nature Communications, 4, 1446(2013). https://doi.org/10.1038/ncomms2411
  25. D. Zhao, C. Wang, Z. Song, Y. Yu, C. Chen, X. Zhao, K. Zhu and Y. Yan, "Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23%," ACS Energy Lett., 3, 305-306(2018). https://doi.org/10.1021/acsenergylett.7b01287
  26. Jang, K. I., Hong, E. and Kim, J. H., "Improved Electrochemical Performance of Dye-sensitized Solar Cell via Surface Modifications of the Working Electrode by Electrodeposition," Korean J. Chem. Eng., 30, 620-625(2013). https://doi.org/10.1007/s11814-012-0189-7
  27. Yang, J., Lin, Y. and Meng, Y., "Effects of Dye Etching on the Morphology and Performance of ZnO Nanorod Dye-sensitized Solar Cells," Korean J. Chem. Eng., 30, 2026-2029(2013). https://doi.org/10.1007/s11814-013-0133-5
  28. Park, S., Son, M. K., Kim, S. K., Jeong, M. S., Prabakar, K. and Kim, H. J., "Effects of Dye Etching on the Morphology and Performance of ZnO Nanorod Dye-sensitized Solar Cells," Korean J. Chem. Eng., 30, 2088-2092(2013). https://doi.org/10.1007/s11814-013-0195-4
  29. Umale, S., Sudhakar, V., Sontakke, S. M., Krishnamoorthy, K. and Pandit, A. B., "Improved Efficiency of DSSC Using Combustion Synthesized $TiO_2$," Materials Research Bulletin, 109, 222-226(2019). https://doi.org/10.1016/j.materresbull.2018.09.044
  30. Klunder, K. J., Elliott, C. M. and Henry, C. S., "Highly Transparent Tetraaminophthalocyanine Polymer Films for DSSC Cathodes," J. Mater. Chem. A, 6, 2767(2018). https://doi.org/10.1039/C7TA10167H
  31. So, S., Hwang, I., Yoo, J., Mohajernia, S., Mackovic, M., Spiecker, E., Cha, G., Mazare, A. and Schmuki, P., "Inducing a Nanotwinned Grain Structure within the $TiO_2$ Nanotubes Provides Enhanced Electron Transport and DSSC Efficiencies >10%," Adv. Energy Mater., 8, 1800981(2018). https://doi.org/10.1002/aenm.201800981
  32. Santos, G. C. d., Oliveira, E. F., Lavarda, F. C. and Silva-Filho, L. C. d., "Inducing a Nanotwinned Grain Structure within the $TiO_2$ Nanotubes Provides Enhanced Electron Transport and DSSC Efficiencies >10%," Journal of Molecular Modeling, 25, 75(2019). https://doi.org/10.1007/s00894-019-3958-y
  33. Aksoy, S., Gorgun, K., Caglar, Y. and Caglar, M., "Effect of Loading and Standbye Time of the Organic Dye N719 on the Photovoltaic Performance of ZnO based DSSC," Journal of Molecular Structure, 1189, 181-186(2019). https://doi.org/10.1016/j.molstruc.2019.04.040
  34. Chu, V. B., Park, S. J., Park, G. S., Jeon, H. S., Hwang, Y. J. and Min, B. K., "Semi-transparent Thin Film Solar Cells by a Solution Process," Korean J. Chem. Eng., 33, 880-884(2016). https://doi.org/10.1007/s11814-015-0200-1
  35. Kim, J. and Shin, H. B., "Effect of Substrate Off-orientation on the Characteristics of GaInP/AlGaInP Single Heterojunction Solar Cells," Korean J. Chem. Eng., 36, 305-311(2019). https://doi.org/10.1007/s11814-018-0195-5
  36. Lee, D. and Yong, K., "Non-vacuum Deposition of CIGS Absorber Films for Low-cost Thin Film Solar Cells," Korean J. Chem. Eng., 30, 1347-1358(2013). https://doi.org/10.1007/s11814-013-0101-0
  37. Truong, N. T. N., Trinh, K. T., Pham, V. T. H., Kim, C. D. and Park, C., "Synthesis and Thermal Annealing Treatment of Octylphosphonic Acid-capped CdSe-tetrapod Nanocrystals for Bulk Hetero-junction Solar Cell Applications," Korean J. Chem. Eng., 32, 761-766(2015). https://doi.org/10.1007/s11814-014-0300-3
  38. Pejjai, B., Reddy, V. R. M., Seku, K., Cho, H., Pallavolu, M. R., Le, T. T. T., Jeong, D. S., Kotte, T. R. R. and Park, C., "Synthesis of Binary Cu-Se and In-Se Nanoparticle Inks Using Cherry Blossom Gum for $CuInSe_2$ Thin Film Solar Cell Applications," Korean J. Chem. Eng., 35, 2430-2441(2018). https://doi.org/10.1007/s11814-018-0155-0
  39. Green, M. A., Hishikawa, Y., Dunlop, E. D., Levi, D. H., Ebinger, M. Yoshita and A. W. Y. Ho-Baillie, "Solar cell efficiency tables, J. H. (Version 53)," Prog Photovolt Res Appl., 27, 3-12 (2019). https://doi.org/10.1002/pip.3102
  40. Green, M. A., "Thin-film Solar Cells: Review of Materials, Technologies and Commercial Status," J. Mater. Sci. Mater. Electron, 18, S15-S19(2007). https://doi.org/10.1007/s10854-007-9177-9
  41. Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T., "Organometal Halide Perovskites as Visible-light Sensitizers for Photovoltaic Cells," J. Am. Chem. Soc., 131, 6050-6051(2009). https://doi.org/10.1021/ja809598r
  42. Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., Moon, S. J., Humphry-Baker, R., Yum, J. H., Moser, J. E., Gratzel, M. and Park, N. G., "Lead Iodide Perovskite Sensitized All-solid-state Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%," Scientific Reports, 2, 591(2012). https://doi.org/10.1038/srep00591
  43. Yin, W. J., Yang, J. H., Kang, J., Yan, Y. and Wei, S. H., "Lead Iodide Perovskite Sensitized All-solid-state Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%," J. Mater. Chem. A, 3, 8926-8942(2015). https://doi.org/10.1039/C4TA05033A
  44. Elumalai, N., Mahmud, M., Wang, D. and Uddin, A., "Perovskite Solar Cells: Progress and Advancements," Energies, 9, 861(2016). https://doi.org/10.3390/en9110861
  45. Song, Z., Watthage, S. C., Phillips, A. B. and Heben, M. J., "Pathways Toward High-performance Perovskite Solar Cells: Review of Recent Advances in Organo-metal Halide Perovskites for Photovoltaic Applications," J. of Photonics for Energy, 6, 022001 (2016). https://doi.org/10.1117/1.JPE.6.022001
  46. Green, M. A., Ho-Baillie, A. and Snaith, H. J., "The Emergence of Perovskite Solar Cells," Nature Photonics, 8, 506-514(2014). https://doi.org/10.1038/nphoton.2014.134
  47. Xu, Z., Teo, S. H., Gao, L., Guo, Z., Kamata, Y., Hayase, S. and Ma, T., "La-doped $SnO_2$ as ETL for Efficient Planar-structure Hybrid Perovskite Solar Cells," Organic Electronics, (2019).
  48. Shin, S. S., Suk, J. H., Kang, B. J., Yin, W., Lee, S. J., Noh, J. H., Ahn, T. K., Rotermund, F., Cho, I. S. and Seok, S. L., "Energy-level Engineering of the Electron Transporting Layer for Improving Open-circuit Voltage in Dye and Perovskite-based Solar Cells," Energy Environ. Sci., 12, 958(2019). https://doi.org/10.1039/C8EE03672A
  49. Xia, F., Wu, Q., Zhou, P., Li, Y., Chen, X., Liu, Q., Zhu, J., Dai, S., Lu, Y. and Yang, S., "Efficiency Enhancement of Inverted Structure Perovskite Solar Cells via Oleamide Doping of PCBM Electron Transport Layer," ACS Appl. Mater. Interfaces, 7, 13659-13665(2015). https://doi.org/10.1021/acsami.5b03525
  50. Tan, H., Jain, A., Voznyy, O., Lan, X., Arquer, F. P. G. d., Fan, J. Z., Quintero-Bermudez, R., Yuan, M., Zhang, B., Zhao, Y., Fan, F., Li, P., Quan, L. N., Zhao, Y., Lu, Z. H., Yang, Z., Hoogland, S. and Sargent, E. H., "Efficient and Stable Solution-processed Planar Perovskite Solar Cells via Contact Passivation," Science, 355, 722-726(2017). https://doi.org/10.1126/science.aai9081
  51. Kermanpur, E. H. A. A., Steier, L., Domanski, K., Matsui, T., Tress, W., Saliba, M., Abate, A., Gratzel, M., Hagfeldt, A. and Correa- Baena, J. P., "Highly Efficient and Stable Planar Perovskite Solar Cells by Solution-processed Tin Oxide," Energy Environ. Sci., 9, 3128(2016). https://doi.org/10.1039/C6EE02390H
  52. Seo, J. Y., Uchida, R., Kim, H. S., Saygili, Y., Luo, J., Moore, C., Kerrod, J., Wagstaff, A., Eklund, M., McIntyre, R., Pellet, N., Zakeeruddin, S. M., Hagfeldt, A. and Grätzel, M., "Boosting the Efficiency of Perovskite Solar Cells with CsBr-Modified Mesoporous $TiO_2$ Beads as Electron-Selective Contact," Adv. Funct. Mater., 28, 1705763(2018). https://doi.org/10.1002/adfm.201705763
  53. Yang, D., Yang, R., Wang, K., Wu, C., Zhu, X., Feng, J., Ren, X., Fang, G., Priya, S. and Liu, S. F., "High Efficiency Planar-type Perovskite Solar Cells with Negligible Hysteresis Using EDTAcomplexed $SnO_2$," Nature Communications, 9, 3239(2018). https://doi.org/10.1038/s41467-018-05760-x
  54. Gong, X., Sun, Q., Liu, S., Liao, P., Shen, Y., Gratzel, C., Zakeeruddin, S. M., Gratzel, M. and Wang, M., "Highly Efficienct Perovskite Solar Cells with Gradient Bilayer Electron Transprot Materails," Nano Lett., 18, 3969-3977(2018). https://doi.org/10.1021/acs.nanolett.8b01440
  55. Singh, R., Giri, A., Pal, M., Thiyagarajan, K., Kwak, J., Lee, J. J., Jeong, U. and Cho, K., "Perovskite Solar Cells with an $MoS_2$ Electron Transport Layer," J. Mater. Chem. A, 7, 7151-7158(2019). https://doi.org/10.1039/C8TA12254G
  56. Pulvirenti, F., Wegner, B., Noel, N. K., Mazzotta, G., Hill, R., Patel, J. B., Herz, L. M., Johnston, M. B., Riede, M. K., Snaith, H. J., Koch, N., Barlow, S. and Marder, S. R., "Modification of the Fluorinated Tin Oxide/electron-transporting Material Interface by a Strong Reductant and Its Effect on Perovskite Solar Cell Efficiency," Mol. Syst. Des. Eng., 3, 741-747(2018). https://doi.org/10.1039/C8ME00031J
  57. Anaraki, E. H., Kermanpur, A., Mayer, M. T., Steier, L., Ahmed, T., Turren Cruz, S. H. L., Seo, J. Y., Luo, J., Zakeeruddin, S. M., Tress, W., Edvinsson, T., Gratzel, M., Hagfeldt, A. and Correa-Baena, J. P., "Low-Temperature Nb-Doped $SnO_2$ Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells," ACS Energy Lett., 3, 773-778(2018). https://doi.org/10.1021/acsenergylett.8b00055
  58. Jeon, N. J., Na, H., Jung, E. H., Yang, T. Y., Lee, Y. G., Kim, G., Shin, H. W., Seok, S. I., Lee, J. and Seo, J., "A Fluorene-terminated Hole-transporting Material for Highly Efficient and Stable Perovskite Solar Cells," Nature Energy, 3, 682-689(2018). https://doi.org/10.1038/s41560-018-0200-6
  59. Kim, Y. C., Yang, T. Y., Jeon, N. J., Im, J., Jang, S., Shin, T. J., Shin, H. W., Kim, S., Lee, E., Kim, S., Noh, J. H., Seok, S. I. and Seo, J., "Engineering Interface Structures Between Lead Halide Perovskite and Copper Phthalocyanine for Efficient and Stable Perovskite Solar Cells," Energy Environ. Sci., 10, 2109-2116(2017). https://doi.org/10.1039/C7EE01931A
  60. Zhang, L., Zhou, X., Zhong, X., Cheng, C., Tian, Y. and Xu, B., "Hole-transporting Layer Based on a Conjugated Polyelectrolyte with Organic Cations Enables Efficient Inverted Perovskite Solar Cells," Nano Energy, 57, 248-255(2019). https://doi.org/10.1016/j.nanoen.2018.12.033
  61. Wang, K. C., Jeng, J. Y., Shen, P. S., Chang, Y. C., Diau, E. W. G., Tsai, C. H., Chao, T. Y., Hsu, H. C., Lin, P. Y., Chen, P., Guo, T. F. and Wen, T. C., "P-type Mesoscopic Nickel Oxide/organometallic Perovskite Heterojunction Solar Cells," Scientific Reports, 4, 4756(2014). https://doi.org/10.1038/srep04756
  62. Rakstys, K., Paek, S., Gao, P., Gratia, P., Marszalek, T., Grancini, G., Cho, K. T., Genevicius, K., Jankauskas, V., Pisula, W. and Nazeeruddin, M. K., "Molecular Engineering of Face-on Oriented Dopant-free Hole Transporting Material for Perovskite Solar Cells with 19% PCE," J. Mater. Chem. A, 5, 7811(2017). https://doi.org/10.1039/C7TA01718A
  63. Christians, J. A., Schulz, P., Tinkham, J. S., Schloemer, T. H., Harvey, S. P., Villers, B. J. T. d., Sellinger, A., Berry, J. J. and Luther, J. M., "Tailored Interfaces of Unencapsulated Perovskite Solar Cells for > 1,000 hour Operational Stability," Nature Energy, 3, 68-74(2018). https://doi.org/10.1038/s41560-017-0067-y
  64. Nie, W., Tsai, H., Blancon, J. C., Liu, F., Stoumpos, C. C., Traore, B., Kepenekian, M., Durand, O., Katan, C., Tretiak, S., Crochet, J., Ajayan, P. M., Kanatzidis, M. G., Even, J. and Mohite, A. D., "Critical Role of Interface and Crystallinity on the Performance and Photostability of Perovskite Solar Cell on Nickel Oxide," Adv. Mater., 30, 1703879(2018). https://doi.org/10.1002/adma.201703879
  65. Mali, S. S. and Hong, C. K., "p-i-n/n-i-p Type Planar Hybrid Structure of Highly Efficient Perovskite Solar Cells Towards Improved Air Stability: Synthetic Strategies and the role of p-type Hole Transport Layer (HTL) and n-type Electron Transport Layer (ETL) Metal Oxides," Nanoscale, 8, 10528(2016). https://doi.org/10.1039/C6NR02276F
  66. Tavakoli, M. M., Tress, W., Milić, J. V., Kubicki, D., Emsley, L. and Grätzel, M., "Addition of Adamantylammonium Iodide to Hole Transport Layers Enables Highly Efficient and Electroluminescent Perovskite Solar Cells," Energy Environ. Sci., 11, 3310 (2018). https://doi.org/10.1039/C8EE02404A
  67. Chen, W., Zhou, Y., Wang, L. G., Wu, Y., Tu, B., Yu, B., Liu, F., Tam, H. W., Wang, G., Djurisic, A. B., Huang, L. and He, Z., "Molecule-Doped Nickel Oxide: Verified Charge Transfer and Planar Inverted Mixed Cation Perovskite Solar Cell," Adv. Mater., 30, 1800515(2018). https://doi.org/10.1002/adma.201800515
  68. Yu, J. C., Hong, J. A., Jung, E. D., Kim, D. B., Baek, S. M., Lee, S., Cho, S., Park, S. S., Choi, K. J. and Song, M. H., "Highly Efficient and Stable Inverted Perovskite Solar Cell Employing PEDOT: GO Composite Layer as a Hole Transport Layer," Scientific Reports, 8, 1070(2018). https://doi.org/10.1038/s41598-018-19612-7
  69. Calio, L., Salado, M., Kazim, S. and Ahmad, S., "A Generic Route of Hydrophobic Doping in Hole Transporting Material to Increase Longevity of Perovskite Solar Cells," Joule, 2, 1800-1815 (2018). https://doi.org/10.1016/j.joule.2018.06.012
  70. Bruijnaers, B. J., Schiepers, E., Weijtens, C. H. L., Meskers, S. C. J., Wienk, M. M. and Janssen, R. A. J., "The Effect of Oxygen on the Efficiency of Planar p-i-n Metal Halide Perovskite Solar Cells with a PEDOT: PSS Hole Transport Layer," J. Mater. Chem. A, 6, 6882(2018). https://doi.org/10.1039/C7TA11128B
  71. Wu, W. Q., Wang, Q., Fang, Y., Shao, Y., Tang, S., Deng, Y., Lu, H., Liu, Y., Li, T., Yang, Z., Gruverman, A. and Huang, J., "Molecular Doping Enabled Scalable Blading of Efficient Hole-transport-layer-free Perovskite Solar Cells," Nature Communications, 9, 1625(2018). https://doi.org/10.1038/s41467-018-04028-8
  72. Mali, S. S., Kim, H., Kim, H. H., Shim, S. E. and Hong, C. K., "Nanoporous p-type NiOx Electrode for Pin Inverted Perovskite Solar Cell Toward Air Stability," Materials Today, 21, 483-500 (2018). https://doi.org/10.1016/j.mattod.2017.12.002
  73. Zhang, J., Xu, B., Yang, L., Ruan, C., Wang, L., Liu, P., Zhang, W., Vlachopoulos, N., Kloo, L., Boschloo, G., Sun, L., Hagfeldt, A. and Johansson, E. M. J., "The Importance of Pendant Groups on Triphenylamine-Based Hole Transport Materials for Obtaining Perovskite Solar Cells with over 20% Efficiency," Adv. Energy Mater., 8, 1701209(2018). https://doi.org/10.1002/aenm.201701209
  74. Domanski, K., Correa-Baena, J. P., Mine, N., Nazeeruddin, M. K., Abate, A., Saliba, M., Tress, W., Hagfeldt, A. and Grätzel, M., "The Importance of Pendant Groups on Triphenylamine-Based Hole Transport Materials for Obtaining Perovskite Solar Cells with over 20% Efficiency," ACS Nano, 10, 6306-6314(2016). https://doi.org/10.1021/acsnano.6b02613
  75. Baranwal, A. K., Kanaya, S., Peiris, T. A. N., Mizuta, G., Nishina, T., Kanda, H., Miyasaka, T., Segawa, H. and Ito, S., "100 C Thermal Stability of Printable Perovskite Solar Cells Using Porous Carbon Counter Electrodes," ChemSusChem, 9, 2604-2608(2016). https://doi.org/10.1002/cssc.201600933
  76. Yang, M., Li, J., Li, J., Yuan, Z., Zou, J., Lei, G., Zhao, L., Wang, X., Dong, B. and Wang, S., "High Efficient and Long-time Stable Planar Heterojunction Perovskite Solar Cells with Doctor-bladed Carbon Electrode," Journal of Power Sources, 424, 61-67(2019). https://doi.org/10.1016/j.jpowsour.2019.03.092
  77. Aitola, K., Domanski, K., Correa-Baena, J. P., Sveinbjornsson, K., Saliba, M., Abate, A., Gratzel, M., Kauppinen, E., Johansson, E. M. J., Tress, W., Hagfeldt, A. and Boschloo, G., "High Efficient and Long-time Stable Planar Heterojunction Perovskite Solar Cells with Doctor-bladed Carbon Electrode," Adv. Mater., 29, 1606398 (2017). https://doi.org/10.1002/adma.201606398
  78. Luo, D., Yang, W., Wang, Z., Sadhanala, A., Hu, Q., Su, R., Shivanna, R., Trindade, G. F., Watts, J. F., Xu, Z., Liu, T., Chen, K., Ye, F., Wu, P., Zhao, L., Wu, J., Tu, Y., Zhang, Y., Yang, X., Zhang, W., Friend, R. H., Gong, Q., Snaith, H. J. and Zhu, R., "Enhanced Photovoltage for Inverted Planar Heterojunction Perovskite Solar Cells," Science, 360, 1442-1446(2018). https://doi.org/10.1126/science.aap9282
  79. Nouri, E., Mohammadi, M. R. and Lianos, P., "Improving the Stability of Inverted Perovskite Solar Cells Under Ambient Conditions with Graphene-based Inorganic Charge Transporting Layers," Carbon, 126, 208-214(2018). https://doi.org/10.1016/j.carbon.2017.10.015
  80. Cai, Y., Zhang, Z., Zhou, Y., Liu, H., Qin, Q., Lu, X., Gao, X., Shui, L., Wu, S. and Liu, J., "Enhancing the Efficiency of Lowtemperature Planar Perovskite Solar Cells by Modifying the Interface Between Perovskite and Hole Transport Layer with Polymers," Electrochimica Acta, 261, 445-453(2018). https://doi.org/10.1016/j.electacta.2017.12.135
  81. Kim, Y. Y., Park, E. Y., Yang, T. Y., Noh, J. H., Shin, T. J., Jeona, N. J. and Seo, J., "Fast Two-step Deposition of Perovskite via Mediator Extraction Treatment for Large-area, High-performance Perovskite Solar Cells," J. Mater. Chem. A., 6, 12447(2018). https://doi.org/10.1039/C8TA02868K
  82. Zhang, P., Wu, J., Zhang, T., Wang, Y., Liu, D., Chen, H., Ji, L., Liu, C., Ahmad, W., Chen, Z. D. and Li, S., "Perovskite Solar Cells with ZnO Electron-transporting Materials," Adv. Mater., 30, 1703737(2018). https://doi.org/10.1002/adma.201703737
  83. Song, Z., Abate, A., Watthage, S. C., Liyanage, G. K., Phillips, A. B., Steiner, U., Gräetzel, M. and Heben, M. J., "Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the $PbI_2-CH_3NH_3I-H_2O$ System," Adv. Energy Mater., 6, 1600846 (2016). https://doi.org/10.1002/aenm.201600846
  84. Rong, Y., Hu, Y., Mei, A., Tan, H., Saidaminov, M. I., Seok, S. I., McGehee, M. D., Sargent, E. H. and Han, H., "Challenges for Commercializing Perovskite Solar Cells," Science, 361, 1214(2018).
  85. Son, D. Y., Kim, S. G., Seo, J. Y., Lee, S. H., Shin, H., Lee, D. and Park, N. G., "Universal Approach Toward Hysteresis-free Perovskite Solar Cell via Defect Engineering," J. Am. Chem. Soc., 140, 1358-1364(2018). https://doi.org/10.1021/jacs.7b10430
  86. Jung, H. S. and Park, N. G., "Perovskite Solar Cells: From Materials to Devices," Small, 11, 10-25(2015). https://doi.org/10.1002/smll.201402767
  87. Turren-Cruz, S. H., Saliba, M., Mayer, M. T., Juarez-Santiesteban, H., Mathew, X., Nienhaus, L., Tress, W., Erodici, M. P., Sher, M. J., Bawendi, M. G., Gratzel, M., Abate, A., Hagfeldt, A. and Correa-Baena, J. P., "Enhanced Charge Carrier Mobility and Lifetime Suppress Hysteresis and Improve Efficiency in Planar Perovskite Solar Cells," Energy Environ. Sci., 11, 78(2018). https://doi.org/10.1039/C7EE02901B
  88. Singh, T. and Miyasaka, T., "Stabilizing the Efficiency Beyond 20% with a Mixed Cation Perovskite Solar Cell Fabricated in Ambient air Under Controlled Humidity," Adv. Energy Mater., 8, 1700677(2018). https://doi.org/10.1002/aenm.201700677
  89. Turren-Cruz, S. H., Hagfeldt, A. and Saliba, M., "Methylammoniumfree, High-performance and Stable Perovskite Solar Cells on a Planar Architecture," Science, 362, 449-453(2018). https://doi.org/10.1126/science.aat3583
  90. Gong, J., Yang, M., Rebollar, D., Rucinski, J., Liveris, Z., Zhu, K. and Xu, T., "Divalent Anionic Doping in Perovskite Solar Cells for Enhanced Chemical Stability," Adv. Mater., 1800973(2018). https://doi.org/10.1002/adma.201800973
  91. Zhao, W., Yao, Z., Yu, F., Yang, D. and Liu, S. F., "Alkali Metal Doping for Improved $CH_3NH_3PbI_3$ Perovskite Solar Cells," Adv. Sci., 5, 1700131(2018). https://doi.org/10.1002/advs.201700131
  92. Jiang, J., Wang, Q., Jin, Z., Zhang, X., Lei, J., Bin, H., Zhang, Z. G., Li, Y. and Liu, S. F., "Polymer Doping for High-Efficiency Perovskite Solar Cells with Improved Moisture Stability," Adv. Energy Mater., 8, 1701757(2018). https://doi.org/10.1002/aenm.201701757
  93. Tavakoli, M. M., Bi, D., Pan, L., Hagfeldt, A., Zakeeruddin, S. M. and Grätzel, M., "Adamantanes Enhance the Photovoltaic Performance and Operational Stability of Perovskite Solar Cells by Effective Mitigation of Interfacial Defect States," Adv. Energy Mater., 8, 1800275(2018). https://doi.org/10.1002/aenm.201800275
  94. Yu, J. C., Badgujar, S., Jung, E. D., Singh, V. K., Kim, D. W., Gierschner, J., Lee, E. G., Kim, Y. S., Cho, S., Kwon, M. S. and Song, M. H., "Highly Efficient and Stable Inverted Perovskite Solar Cell Obtained via Treatment by Semiconducting Chemical Additive," Adv. Mater., 31, 1805554(2019).
  95. Soe, C. M. M., Nie, W., Stoumpos, C. C., Tsai, H., Blancon, J. C., Liu, F., Even, J., Marks, T. J., Mohite, A. D. and Kanatzidis, M. G., "Understanding Film Formation Morphology and Orientation in High Member 2D Ruddlesden-Popper Perovskites for high-efficiency Solar Cells," Adv. Energy Mater., 8, 1700979(2018). https://doi.org/10.1002/aenm.201700979
  96. Kim, M., Motti, S. G., Sorrentino, R. and Petrozza, A., "Enhanced Solar Cell Stability by Hygroscopic Polymer Passivation of Metal Halide Perovskite Thin Film," Energy Environ. Sci., 11, 2609(2018). https://doi.org/10.1039/C8EE01101J
  97. Hwang, I., Jeong, I., Lee, J., Ko, M. J. and Yong, K., "Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation," ACS Appl. Mater. Interfaces, 7, 17330-17336(2015). https://doi.org/10.1021/acsami.5b04490
  98. Lin, J., Lai, M., Dou, L., Kley, C. S., Chen, H., Peng, F., Sun, J., Lu, D., Hawks, S. A., Xie, C., Cui, F., Alivisatos, A. P., Limmer, D. T. and Yang, P., "Thermochromic Halide Perovskite Solar Cells," Nature Materials, 17, 261-267(2018). https://doi.org/10.1038/s41563-017-0006-0
  99. Tsai, H., Asadpour, R., Blancon, J. C., Stoumpos, C. C., Durand, O., Strzalka, J. W., Chen, B., Verduzco, R., Ajayan, P. M., Tretiak, S., Even, J., Alam, M. A., Kanatzidis, M. G., Nie, W. and Mohite, A. D., "Light-induced Lattice Expansion Leads to High-efficiency Perovskite Solar Cells," Science, 360, 67-70(2018). https://doi.org/10.1126/science.aap8671
  100. Bu, X., Westbrook, R. J. E., Lanzetta, L., Ding, D., Chotchuangchutchaval, T., Aristidou, N. and Haque, S. A., "Surface Passivation of Perovskite Films via Iodide Salt Coatings for Enhanced Stability of Organic Lead Halide Perovskite Solar Cells," Sol. RRL, 3, 1800282(2019). https://doi.org/10.1002/solr.201800282
  101. Matsui, T., Yokoyama, T., Negami, T., Sekiguchi, T., Saliba, M., Gratzel, M. and Segawa, H., "Surface Passivation of Perovskite Films via Iodide Salt Coatings for Enhanced Stability of Organic Lead Halide Perovskite Solar Cells," Chem. Lett., 47, 814-816(2018). https://doi.org/10.1246/cl.180211
  102. Ke, W. and Kanatzidis, M. G., "Prospects for Low-toxicity Leadfree Perovskite Solar Cells," Nature Communications 10, (2019).
  103. Noel, N. K., Stranks, S. D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A. A., Sadhanala, A., Eperon, G. E., Pathak, S. K., Johnston, M. B., Petrozza, A., Herza, L. M. and Snaith, H. J., "Lead-free Organic-inorganic Tin Halide Perovskites for Photovoltaic Applications," Energy Environ. Sci., 7, 3061(2014). https://doi.org/10.1039/C4EE01076K
  104. Nie, R., Mehta, A., Park, B. W., Kwon, H. W., Im, J. and Seok, S. I., "Mixed Sulfur and Iodide-based Lead-free Perovskite Solar Cells," J. Am. Chem. Soc., 140, 872-875(2018). https://doi.org/10.1021/jacs.7b11332
  105. Song, T. B., Yokoyama, T., Stoumpos, C. C., Logsdon, J., Cao, D. H., Wasielewski, M. R., Aramaki, S. and Kanatzidis, M. G., "Importance of Reducing Vapor Atmosphere in the Fabrication of Tin-based Perovskite Solar Cells," J. Am. Chem. Soc., 139, 836-842(2017). https://doi.org/10.1021/jacs.6b10734
  106. Ito, N., Kamarudin, M. A., Hirotani, D., Zhang, Y., Shen, Q., Ogomi, Y., Iikubo, S., Minemoto, T., Yoshino, K. and Hayase, S., "Mixed Sn-Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air," J. Phys. Chem. Lett., 9, 1682-1688(2018). https://doi.org/10.1021/acs.jpclett.8b00275
  107. Liao, W., Zhao, D., Yu, Y., Grice, C. R., Wang, C., Cimaroli, A. J., Schulz, P., Meng, W., Zhu, K., Xiong, R. G. and Yan, Y., "Leadfree Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%," Adv. Mater., 28, 9333-9340(2016). https://doi.org/10.1002/adma.201602992
  108. Chen, M., Ju, M. G., Garces, H. F., Carl, A. D., Ono, L. K., Hawash, Z., Zhang, Y., Shen, T., Qi, Y., Grimm, R. L., Pacifici, D., Zeng, X. C., Zhou, Y. and Padture, N. P., "Highly Stable and Efficient All-inorganic Lead-free Perovskite Solar Cells with Native-oxide Passivation," Nature Communications 10, (2019).
  109. Shao, S., Liu, J., Portale, G., Fang, H. H., Blake, G. R., Brink, G. H. T., Koster, L. J. A. and Loi, M. A., "Highly Reproducible Sn-based Hybrid Perovskite Solar Cells with 9% Efficiency," Adv. Energy Mater., 8, 1702019(2018). https://doi.org/10.1002/aenm.201702019

피인용 문헌

  1. Molecular Engineering of Hexaazatriphenylene Derivatives toward More Efficient Electron-Transporting Materials for Inverted Perovskite Solar Cells vol.12, pp.34, 2020, https://doi.org/10.1021/acsami.0c10996
  2. Techno-economic and environmental feasibility of mineral carbonation technology for carbon neutrality: A Perspective vol.38, pp.9, 2021, https://doi.org/10.1007/s11814-021-0840-2