DOI QR코드

DOI QR Code

APPROXIMATE IDENTITY OF CONVOLUTION BANACH ALGEBRAS

  • Han, Hyuk (Department of Liberal Arts College of Industrial Science Kongju National University)
  • 투고 : 2020.10.20
  • 심사 : 2020.10.29
  • 발행 : 2020.11.15

초록

A weight ω on the positive half real line [0, ∞) is a positive continuous function such that ω(s + t) ≤ ω(s)ω(t), for all s, t ∈ [0, ∞), and ω(0) = 1. The weighted convolution Banach algebra L1(ω) is the algebra of all equivalence classes of Lebesgue measurable functions f such that ‖f‖ = ∫0∞|f(t)|ω(t)dt < ∞, under pointwise addition, scalar multiplication of functions, and the convolution product (f ⁎ g)(t) = ∫0t f(t - s)g(s)ds. We give a sufficient condition on a weight function ω(t) in order that L1(ω) has a bounded approximate identity.

키워드

과제정보

This work was supported by the research grant of the Kongju National University in 2019.

참고문헌

  1. G. R. Allan, Power-bounded elements and radical Banach algebras, Linear Operators Banach Center Publication, vol 38, Institute of Mathematics Polish Academy of Science, Warsaw, 9-16, 1997.
  2. F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer Verlag, New York Heidelberg Berlin, 1973.
  3. H. G. Dales, Automatic continuity: A survey, Bull. London Math. Soc., 10 (2006) 129-183. https://doi.org/10.1112/blms/10.2.129
  4. H. G. Dales, Radical Banach Algebras and Automatic Continuity, Clarendon Press, Oxford, 2000.
  5. H. G. Dales, P. Aiena, J. Eschmeier, K. Laursen and G. Willis, Introduction to Banach Algebras, operators and Harmonic Analysis, Cambridge University Press, Cambridge, 2003.
  6. S. Grabner, Weak* properties of weighted convolution algebras II, Studia Math., 198 (2010), no. 1, 53-67. https://doi.org/10.4064/sm198-1-3
  7. T. W. Plamer, Banach Algebras and The General Theory of *-algebras Volume I: Algebras and Banach Algebras, Cambridge University Press, Cambridge, 1994.
  8. W. Rudin, Fourier Analysis on Groups, Wiley, New York, 1962.