Acknowledgement
S. Y. Jang was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-201807042748).
References
- J. E. Ahn and S. Y. Jang, Structures and KMS states of a generalized Toeplitz Algebra, arXiv 2006.03197.
- J. B. Bost and A. Connes, Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory, Selecta Math. (New Series), 1 (1995), 411-457. https://doi.org/10.1007/BF01589495
- O. Bratteli and D.W. Robinson, Operator algebras and Quantum Statistical Mechanics 1, Springer-Verlag, Berlin, 1979.
- O. Bratteli and D.W. Robinson, Operator algebras and Quantum Statistical Mechanics 2, second ed., Springer-Verlag, Berlin, 1997.
- L. A. Coburn, The C*-algebra generated by an isometry, I, Bull. Amer. Math. Soc., 73 (1967), 722-226. https://doi.org/10.1090/S0002-9904-1967-11845-7
- J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys., 57(1977), 173-185. https://doi.org/10.1007/BF01625776
- J. Cuntz, K-Theory for certain C*-algebras, Ann of Math., 113 (1981), 181-197. https://doi.org/10.2307/1971137
- J. Cuntz, C*-algebra associated with the ax + b semigroup over ℕ, in K-Theory and Noncommutative Geometry Valladolid, 2006, European Math. Soc., 2008, 201- 215.
- J. Cuntz and X. Li, The regular C*-algebra of an integral domain, In Quanta of Maths, in Clay Math Proc., vol 11, American Mathematical Society, Providence, RI, 2010, 149-170.
- D. E. Evans, On On, Publ. Res. Inst. Math. Sci., 16 (1980), 915-927. https://doi.org/10.2977/prims/1195186936
- R. Exel and M. Laca, Partial dynamical systems and the KMS condition, Comm. Math. Phys., 232 (2003), 223-277. https://doi.org/10.1007/s00220-002-0713-4
- A. A. Huef and M. Laca, I, Reaburn, and A. Sims, KMS states on the C*-algebras of reducible graphs, Cambridge University Press, 2014.
- S. Y. Jang, Wiener-Hopf C*-algebras of strongly perforated semigroups, Bull. Kor. Math. Soc., 47 (2010), no. 6, 1275-1283. https://doi.org/10.4134/BKMS.2010.47.6.1275
- M. Laca, Semigroup of *-endomorphisms, Dirichlet series and phase transition, J. Func. Anal., 152 (1998), 330-378. https://doi.org/10.1006/jfan.1997.3166
- M. Laca and M. van Frankenhuijsen, Phase transition on Hecke C*-algebras and class field theory over ℚ, J. Reine Angew. Math., 595 (2006), 25-53.
- M. Laca and I. Raeburn, Semigroup crossed products and the Toeplitz algebras of nonabelian groups, J. Funct. Anal., 139 (1996), 415-446. https://doi.org/10.1006/jfan.1996.0091
- M. Laca and I. Raeburn, Phase transition on the Toeplitz algebra of the affine semigroup over the natural numbers, Adv. Math., 225 (2010), 643-688. https://doi.org/10.1016/j.aim.2010.03.007
- G. J. Murpy, Ordered groups and crossed products of C*-algebras, Pacific J. Math., 148 (1991), 319-349. https://doi.org/10.2140/pjm.1991.148.319
- A. Nica, C*-algebras generated by isometries and Wiener-Hopf operators, J. Operator Theory, 27 (1992), 17-52.
- X. Li, Semigroup C*-algebras and amenability of semigroups, J. Func. Anal., 262 (2012), 4302-4340. https://doi.org/10.1016/j.jfa.2012.02.020