DOI QR코드

DOI QR Code

A Short Study on Promoting the Dispersal of Phytoseiulus persimilis using a Bridge on Green Pepper

피망에서 브리지를 이용한 칠레이리응애의 확산 증진 연구

  • Cho, Jum Rae (Crop Protection Division, Dept. of Agro-food Safety and Crop protection, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Jeong Hwan (Crop Protection Division, Dept. of Agro-food Safety and Crop protection, National Institute of Agricultural Sciences, RDA) ;
  • Seo, Bo Yoon (Crop Protection Division, Dept. of Agro-food Safety and Crop protection, National Institute of Agricultural Sciences, RDA) ;
  • Park, Bue Yong (Crop Protection Division, Dept. of Agro-food Safety and Crop protection, National Institute of Agricultural Sciences, RDA) ;
  • Seo, Meeja (Crop Protection Division, Dept. of Agro-food Safety and Crop protection, National Institute of Agricultural Sciences, RDA)
  • 조점래 (농촌진흥청 국립농업과학원 농산물안전성부 작물보호과) ;
  • 김정환 (농촌진흥청 국립농업과학원 농산물안전성부 작물보호과) ;
  • 서보윤 (농촌진흥청 국립농업과학원 농산물안전성부 작물보호과) ;
  • 박부용 (농촌진흥청 국립농업과학원 농산물안전성부 작물보호과) ;
  • 서미자 (농촌진흥청 국립농업과학원 농산물안전성부 작물보호과)
  • Received : 2020.09.24
  • Accepted : 2020.11.06
  • Published : 2020.12.01

Abstract

The vertical distribution and dispersion of the two-spotted spider mite, Tetranychus urticae and its predator, Phytoseiulus persimilis, were investigated within and between green pepper plants. We also tested the effect of an artificial bridge with threads on dispersal of P. persimilis between the plants. The extent of spread of T. urticae depended on its infested density and location. When 10 adults of T. urticae were inoculated on upper leaf, they stayed on the upper leaf until 5 days after inoculation. However, when 100 adults were inoculated on an upper leaf, they dispersed to the lower leaf within a day. In condition that 10 adults of T. urticae were inoculated on the lower leaf, they started to move toward upward within a day. In the absence of T. urticae, P. persimilis tended to move to the leaves where T. urticae was present when both T. urticae and P. persimilis were inoculated together within a plant. An artificial bridge with threads between two plants was helpful to disperse P. persimilis to neighboring plants. Therefore, it would be expected that the dispersal of P. persimilis can be promoted by supplying the artificial bridges among plants and by narrowing the distances between plants.

피망 작물에서 점박이응애 및 칠레이리응애의 수직 분포 및 확산 정도를 알아보고, 주간 브릿지를 이용한 칠레이리응애의 확산을 조사하였다. 이들의 확산은 점박이응애의 접종 밀도 및 위치에 따라 달랐다. 점박이응애를 상위엽에 주당 10 마리 접종하였을 경우 방사 5일까지도 하위엽보다는 상위엽에 머무는 경향을 보였으며, 주당 100 마리를 접종했을 때 이미 방사 1일차에 하위엽까지 이동하였다. 반면에 하위엽에 주당 10 마리 접종 후 1일차에 중·상위엽으로 이동하였고, 3일차는 상위엽에만 존재하였다. 주당 100 마리를 접종한 경우 접종 1일차에 상위엽까지 이동하였으며 시간이 경과함에 따라 하위엽보다는 상위엽에 더 많이 분포하는 경향을 보였다. 점박이응애를 접종한 이후 칠레이리응애의 접종 위치에 따라 이들이 확산되는 정도를 조사한 결과, 점박이응애가 없을 경우 칠레이리응애를 하위엽에 방사하여도 상위엽으로 이동하였고, 상위엽에 방사하면 방사 후 3일까지는 상위엽에 머물러 있었다. 점박이응애가 있을 경우 칠레이리응애는 방사 이후 먹이가 있는 곳으로 이동하는 경향을 보였다. 피망 세 개 주를 상부 또는 하부에 실로 연결하고, 2, 3번 작물에 점박이응애를 접종한 후 1번 작물의 상·하위엽에 각각 칠레이리응애를 방사하였을 경우 연결된 실을 통해 이웃 작물로 이동하였다. 따라서 방사되는 칠레이리응애의 확산을 증진하기 위해서 가능하다면 작물체 간격을 좁혀주거나 작물체를 인위적으로 연결하여 준다면 더 넓은 지역으로 확산 가능하여 방사된 칠레이리응애에 의한 점박이응애 방제효과도 크게 증진될 수 있을 것으로 판단된다.

Keywords

References

  1. Buitenhuis, R., Murphy, G., Shipp, L., Scott-Dupree, C., 2015. Amblyseius swirskii in greenhouse production systems: a floricultural perspective. Exp. Appl. Acarol. 65, 451-464. https://doi.org/10.1007/s10493-014-9869-9
  2. Buitenhuis, R., Shipp, L., Scott-Dupree, C., 2010. Dispersal of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) on potted greenhouse chrysanthemum. Biol. Control 52, 110-114. https://doi.org/10.1016/j.biocontrol.2009.10.007
  3. Campbell, C.A.M., Lilley, R., 1999. The effects of timing and rates of release of Phytoseiulus persimilis against two-spotted spider mite Tetranychus urticae on dwarf hops, Biocontrol Sci. Technol. 9, 453-465. https://doi.org/10.1080/09583159929424
  4. Collier, T., Van Steenwyk, R., 2004. A critical evaluation of augmentative biological control. Biol. Control, 31, 245-256. https://doi.org/10.1016/j.biocontrol.2004.05.001
  5. Ham, E.H., Jun, H.J., Lee, J.S., Lim, U.T., Lee, Y.S., Park, J.K., 2019. Biological control of Tetranychus urticae Koch on strawberry using "natural enemy in first" method. Korean J. Appl. Entomol. 58, 319-320. https://doi.org/10.5656/KSAE.2019.11.0.054
  6. Jones, V.P., 1990. Developing sampling plans for spider mites (Acari: Tetranychidae): those who don't remember the pest may have to repeat it. J. Econ. Entomol. 83, 1656-1664. https://doi.org/10.1093/jee/83.5.1656
  7. Jones, V.P., Parrella, M.P., 1984. Dispersion indices and sequential sampling plans for the citrus red mite (Acari: Tetranychidae). J. Econ. Entomol. 77, 75-79. https://doi.org/10.1093/jee/77.1.75
  8. Kennedy, G.G., Smitley, D.R., 1985. Dispersal. In spider mites, their biology, natural enemies and control, Vol. 1A, in:Helle, W. and Sabelis, M.W. (Eds.), Elsevier, Amsterdam, pp. 233-242.
  9. Kumaran, N., 2011. Within-plant and within leaf dispersion pattern of two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetraanychidae) on okra. Arch. Phytopathol. Plant Proc. 44, 1949-1957. https://doi.org/10.1080/03235408.2010.544449
  10. Lopez, L., Smith, H.A., Hoy, M.A., Cave, R.D., 2017. Dispersal of Amblyseius swirskii (Acari: Phytoseiidae) on high-tunnel bell peppers in presence or absence of Polyphagotarsonemus latus (Acari: Tarsonemidae). J. Insect Sci. 17, 1-7. https://doi.org/10.1093/jisesa/iew097
  11. Migeon, A., Nouguier, E., Dorkeld, F., 2010. Spider mites web: a comprehensive database for the Tetranychidae. in: Sabelis, M., Bruin, J., (Eds.), Trends in Acarology. Springer, Dordrecht, pp. 557-560.
  12. Nachman, G., Zemek, R., 2002. Interactions in a tritrophic acarine predator-prey metapopulation system IV: effects of host plant condition on Tetranychus urticae (Acari: Tetraanychidae) Exp. Appl. Acarol. 26, 43-70. https://doi.org/10.1023/A:1020929318422
  13. Opit, G.P., Nechols, J.R., Margolies, D.C., Williams, K.A., 2005. Survival, horizontal distribution, and economics of releasing predatory mites (Acari: Phytoseiidae) using mechanical blowers. Biol. Control. 33, 344-351. https://doi.org/10.1016/j.biocontrol.2005.03.010
  14. Parolin, P., Bresch, C., Desneux, N., Brun, R., Bout, A., Boll, R., Poncet, C., 2012. Secondary plants used in biological control: a review. Int. J. Pest Management. 58, 91-100. https://doi.org/10.1080/09670874.2012.659229
  15. Pratt, P.D., Croft, B.A., 2000. Banker plants: evaluation of release strategies for predatory mites. J. Environ. Hort. 18, 211-217.
  16. Ryoo, M.I., 1996. Influence of the spatial distribution pattern of prey among patches and spatial coincidence on the functional and numerical response of Phytoseiulus persimilis (Acarina, Phytoseiidae). J. Appl. Entomol. 120, 187-192. https://doi.org/10.1111/j.1439-0418.1996.tb01589.x
  17. Skirvin, D., Fenlon, J., 2003. Of mites and movement: the effects of plant connectedness and temperature on movement of Phytoseiulus persimilis. Biol. Control. 27, 242-250. https://doi.org/10.1016/S1049-9644(03)00022-7
  18. Suski, Z.W., Naegele, J.A., 1963. Advances in acarology, light response in the two-spotted spider mite. II. Behavior of the "sedentary" and "dispersal" phases. Cornell University Press, New York, p. 445-453.
  19. Takafuji, A., 1977. The effect of the rate of successful dispersal of a phytoseiid mite, Phytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae) on the persistence in the interactive system between the predator and its prey. Res. Popul. Ecol. 18, 210-222. https://doi.org/10.1007/BF02510848
  20. van Lenteren, J.C., Woets, J., 1988. Biological and integrated pest control in greenhouses. Ann. Rev. Entomol. 33, 239-269. https://doi.org/10.1146/annurev.en.33.010188.001323
  21. Walzer, A., Moder, K., Schausberger, K.M.P., 2007. Spatio-temporal within-plant distribution of the spider mite Tetranychus urticae confronted with specialist and generalist predators. IOBC/WPRS Bull. 30, 139-145.
  22. Weintraub, P.G., Kleitman, S., Alchanatis, V., Palevsky, E., 2007. Factors affecting the distribution of a predatory mite on greenhouse sweet pepper. Exp. Appl. Acarol. 42, 23-35. https://doi.org/10.1007/s10493-007-9077-y
  23. Wilson, L.J., Morton, R., 1993. Seasonal abundance and distribution of Tetranychus urticae implications for management. Bull. Entomol. Res. 83, 291-303. https://doi.org/10.1017/S0007485300034787
  24. Zemek, R., Nachman, G., 1998. Interactions in a tritrophic acarine predator-prey metapopulation system: effects of Tetranychus urticae on the dispersal rates of Phytoseiulus persimilis (Acarina: Tetranychidae, Phytoseiidae). Exp. Appl. Acarol. 22, 259-278. https://doi.org/10.1023/A:1006022500205
  25. Zemek, R., Nachman, G., 1999. Interactions in a tritrophic acarine predator-prey metapopulation system: prey location and distance moved by Phytoseiulus persimilis (Acari: Phytoseiidae). Exp. Appl. Acarol. 23, 21-40. https://doi.org/10.1023/A:1006156931391
  26. Zhang, Z.Q., Sanderson, J.P., 1993. Behavioural responses to prey density by three acarine predator species with different degrees of polyphagy. Oecologia 96, 147-156. https://doi.org/10.1007/BF00317726