DOI QR코드

DOI QR Code

국내 서양종꿀벌 순계의 형태적 특징

Morphometric Characterization of Honey Bee, Apis mellifera Linnaeus, Inbred Lines in Korea

  • 올가프런제 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 최용수 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 김동원 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 박보선 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 박희근 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 강은진 (농촌진흥청 국립농업과학원 농업생물부)
  • Frunze, Olga (Department of Agricultural Biology, National Institute of Agricultural Science, RDA) ;
  • С (Department of Agricultural Biology, National Institute of Agricultural Science, RDA) ;
  • hoi, Yong Soo (Department of Agricultural Biology, National Institute of Agricultural Science, RDA) ;
  • Kim, Dong Won (Department of Agricultural Biology, National Institute of Agricultural Science, RDA) ;
  • Park, Bo Sun (Department of Agricultural Biology, National Institute of Agricultural Science, RDA) ;
  • Park, Hee Geun (Department of Agricultural Biology, National Institute of Agricultural Science, RDA)
  • 투고 : 2020.09.04
  • 심사 : 2020.11.04
  • 발행 : 2020.12.01

초록

이탈리안벌인 A, C, F계통과 코카시안벌인 D, V계통을 2005년부터 2007년까지 국내에서 수집하였다. 수집한 계통은 육종을 위해 격리된 섬에서 근친교배를 통해 순계로 분리하였다. 이 연구는 꿀, 로열젤리 다수확계통 선발에 있어 개체군 선발과 육종 효율을 높이기 위해 수행되었다. 23 개의 형태학적 특성을 평가하고 두 아종의 기존 데이터와 비교한 결과, 이탈리안벌 순계계통은 코카시안벌 순계 계통과 달리8개의 특성이 기존의 이탈리안벌과 유사해 더 많은 특성이 보존되고 있음을 알 수 있었다. 또한 국내에서 유지되고 있는 순계들은 타 지역의 동일 계통과 차이를 보여 분리된 순계의 형태적인 특징이 확인되었다.

The A, C, F colonies of Apis mellifera ligustica Spin. and D, V colony of Apis mellifera caucasia Gorb. bees were collected from 2005-2007. Consequently, inbred lines were derived from the bees of original colonies by matting in the isolated island with due regard for pure breeding. This project helps in the selection of colonies with higher production capacity, aiming to improve honey and royal jelly production and breeding programs. Twenty-three standard morphological traits of honeybee were evaluated, and samples were compared with the data of the two original subspecies. The result suggested that 8 traits partly preserved in bees of inbred lines, and the bees from A. m. ligustica preserved more traits than bees from A. m. caucasia. Among the studied inbred lines, the F line is distinguished by an increase in leg parameters, considered as a favorable phenotypic trait of inbred lines. Importantly, bred of beelines in the same area can be classified as remote and isolated areas. Therefore, we observed differences of inbred lines with the origin subspecies in description acquired with morphometric characteristics as a result of adaptation, breeding, purebred individual lines used as an important resource for breeding novel cross-breeding colonies.

키워드

참고문헌

  1. Alattal, Y., Al Ghamdi, A., Al Sharhi, M., Fuchs S., 2014. Morphometric characterisation of the native honeybee, Apis mellifera Linnaeus, 1758, of Saudi Arabia. Zool. Middle East 60, 226-235. https://doi.org/10.1080/09397140.2014.944431
  2. Alpatov, W.W., 1948a. Porody medonosnoi pchely (Honey bee breeds). MOIP Press, Moscow.
  3. Alpatov, W.W., 1948b. The races of honey bees and their use in agriculture (in Russian). Sredi prirodi. MOIP Press, Moscow. 4, 1-65.
  4. Bezdec, J.C., 1976. A physical Interpretation of Fuzzy ISODATAI-M. IEEE Trans Syst. Man. Cybern. 6, 387-389. https://doi.org/10.1109/TSMC.1976.4309506
  5. Bouga, M., Harizanis, P.C., Kilias, G., Alahiotis, S., 2005. Genetic divergence and phylogenetic relationships of honey bee Apis mellifera (Hymenoptera: Apidae) populations from Greece and Cyprus using PCR-RFLP. Apidologie 36, 335-344. https://doi.org/10.1051/apido:2005021
  6. Brandorf, A.Z., Ivoilova, M.M., Ilyasov, R.A., 2012. Population genetics differentiation of honey bees of Kirovskaya oblast. RUS J. of beekeeping 7, 14-16.
  7. Bustamante, T., Baiser, B., Ellis, J.D., 2020. Comparing classical and geometric morphometric methods to discriminate between the South African honey bee subspecies Apis mellifera scutellata and Apis mellifera capensis (Hymenoptera: Apidae). Apidologie 51, 123-136. https://doi.org/10.1007/s13592-019-00651-6
  8. Chambo, E., 2016. Beekeeping and bee conservation: Advances in Research. BoD, Books on Demand, Germany.
  9. Clarke, K.E., Oldroyd, B.P., Javier, J., 2001. Origin of honeybees (Apis mellifera L.) from the Yucatan peninsula inferred from mitochondrial DNA analysis. Mol. Ecol. 10, 1347-1355. https://doi.org/10.1046/j.1365-294X.2001.01274.x
  10. Dunn, J.C., 1973. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Cybern. Syst. 3, 32-57.
  11. Edriss, M.A., Mostajeran, M., Ebadi, R., 2002. Correlation between honey yield and morphological traits of honey bee in Isfahan. JWSS-Isfahan University of Technology 6, 91-103.
  12. Eischen, F.A., Rothenbuhler, W.C., Kulincevic, J.M., 1982. Length of life and dry weight of worker honeybees rears in colonies with different worker-larva ratios. J. Apic. Res. 21, 19-25. https://doi.org/10.1080/00218839.1982.11100511
  13. Garnery, L., Solignac, M., Celebrano, G., Cornuet, J.M., 1993. A simple test using restricted PCR-amplified mitochondrial DNA to study the genetic structure of Apis mellifera L. Experientia. 49, 1016-1021. https://doi.org/10.1007/BF02125651
  14. Gerard, M., Vanderplanck, M., Wood, T., Michez, D., 2020. Global warming and plant-pollinator mismatches. Emerg. Top Life Sci. 4, 77-86. https://doi.org/10.1042/ETLS20190139
  15. Harder, L.D., 1985. Morphology as a predictor of flower choice by bumble bees. Ecology 66, 198-210. https://doi.org/10.2307/1941320
  16. Ilyasov, R.A., Kwon, H.W., 2019. Phylogenetics of bees. CRC Press, Florida.
  17. Ilyasov, R.A., Youn, H.G., Lee, M.L., 2019. Phylogenetic relationships of Russian far-east Apis cerana with other North Asian populations. J. Apic. Sci. 63, 289-314. https://doi.org/10.2478/jas-2019-0024
  18. Jung, C., Cho, S., 2015. Relationship between honeybee population and honey production in Korea: a historical trend analysis. J. of Apiculture. 30, 7-12. https://doi.org/10.17519/apiculture.2015.04.30.1.7
  19. Kamshilov, M.M., 1972. Phenotype and genotype in evolution. Problems of Evolution 2, 28-44.
  20. Kandemir, I., Kence, M., Kence, A., 2000. Genetic and morphometric variation in honeybee (Apis mellifera L.) populations of Turkey. Apidologie 31, 343-356. https://doi.org/10.1051/apido:2000126
  21. Kandemir, I., Meixner, M.D., Ozkan, A., Sheppard W.S., 2006. Genetic characterization of honey bee (Apis mellifera cypria) populations in northern Cyprus. Apidologie 37, 547-555. https://doi.org/10.1051/apido:2006029
  22. Kandemir, I., Ozkan, A., Fuchs, S., 2011. Reevaluation of honeybee (Apis mellifera) microtaxonomy: a geometric morphometric approach. Apidologie 42, 18-627.
  23. Kekecoglu, M., Erogu, N., Kambur, M., Ucak, U., 2020. The relationships between propolis collecting capability and morphometric features of some honey bee races and ecotypes in Anatolia. Tar. Bil. Der. 26, 71-77.
  24. Ken, T., Fuchs, S., Koeniger, N., Ruiguang, Z., 2003. Morphological characterization of Apis cerana in the Yunnan Province of China. Apidologie 34, 553-561. https://doi.org/10.1051/apido:2003049
  25. Kim, H.K., Lee, M.Y., Lee, M.L., 2015. Hygienic behavior test of six inbred lines in Apis mellifera through freeze-killed brood method. J. Apiculture. 30, 187-190. https://doi.org/10.17519/apiculture.2015.09.30.3.187
  26. Kirpik, M.A., Batutaki, O., Tanrmkulu, D., 2010. Determining the relative abundance of honey bee (Apis mellifera L.) races in Kars plateau and evaluating some of their characteristics. Kafkas. Univ. Vet. Fak. Derg. 16, 278-282.
  27. Kolmes, S.A., Sam, Y., 1991. Relationships between sizes of morphological features in worker honey bees (Apis mellifera). J. N. Y. Entomol. Soc. 99, 684-690.
  28. Lee, M. L., Lee, M. Y., Sim, H. S., Choi, Y. S., Kim, H. K., Byoun, G. H., 2014. Characteristics of superior triple crossed honeybee (Apis mellifera L.) - honey collection, hibernation, hygienic behavior. J. Apic. Res. 29, 257-262.
  29. Lee, M.R., Choi, Y.S., Kim, D.W., Lee, M.Y., 2019. Age-dependent hypopharyngeal gland development and morphometric characteristics in the cross-bred lineage of honeybees reared for high royal jelly production. J. Asia Pac. Entomol. 22, 699-704. https://doi.org/10.1016/j.aspen.2019.05.004
  30. Lee, M.Y., Kim, H.K., Lee, M.L., Choi, Y.S., Han, S.M., Kim, D.W., 2017. Comparison of royal jelly production among cross breed of honey bee in period of nectar flow and non-nectar flow. J. Apiculture. 32, 385-389. https://doi.org/10.17519/apiculture.2017.11.32.4.385
  31. Lee, Y.S., 2019. Seeking modernity in twentieth-century Korea through Sugar. East Asian His. Culture Rev. 31, 263-268.
  32. Legendre, P., Legendre, L., 2012. Numerical ecology. Elsevier, Amsterdam.
  33. Marghitas, L, Paniti-Teleky, O., 2008. Morphometric differences between honey bees (Apis mellifera carpatica) populations from Transylvanian area. Anim. Sci. Pap. 41, 309-315.
  34. Milne, C.P., Pries, K., 1984. Honeybee corbicular size and honey production. J. Apic. Res. 23, 11-14. https://doi.org/10.1080/00218839.1984.11100601
  35. Mostajeran, M.A., Edriss, M.A., Basiri, M.R., 2006. Analysis of colony and morphological characters in honey bees (Apis mellifera meda). Pak. J. Biol. Sci. 9, 2685-2688. https://doi.org/10.3923/pjbs.2006.2685.2688
  36. Ockendon, N., Baker, D.J., Carr, J.A., 2014. Mechanisms under-pinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Chang. Biol. 20, 2221-2229. https://doi.org/10.1111/gcb.12559
  37. Ruttner, F., 1988. Biogeography and taxonomy of honeybees. Springer Verlag, Berlin.
  38. Ruttner, F., 2006. Tekhnika razvedeniya i selektsiormyi otbor pchel [Breeding and selection of honeybees], 7th ed., Astrel, Moscow.
  39. Stanimirovic, Z., Glavinic, U., Ristanic, M., 2019. Looking for the causes of and solutions to the issue of honey bee colony losses. Acta. Vet. Brno. 69, 1-31. https://doi.org/10.2478/acve-2019-0001
  40. Suppasat, T., 2007. Genetic relationships between two honey bees (Apis mellifera Linnaeus, 1758 and Apis cerana Fabricius, 1753) and varroa mites in Thailand. Chulalongkorn University, Bangkok.
  41. Szabo, T.I., 1988. Honeybee induced hive entrance defrosting. J. Apic. Res. 27, 115-121. https://doi.org/10.1080/00218839.1988.11100789
  42. Tofilski, A., 2008. Using geometric morphometrics and standard morphometry to discriminate three honeybee subspecies. Apidologie 39, 558-563. https://doi.org/10.1051/apido:2008037
  43. Villa, J.D., Rinderer, T.E., Bigalk, M., 2009. Overwintering of Russian honey bees in northeastern Iowa. Bee Culture 1, 19-21.
  44. Waddington, K.D., 1989. Implications of variation in worker body size for the honey bee recruitment system. J. Insect. Behav. 2, 91-103. https://doi.org/10.1007/BF01053620
  45. Williams, N., 2008. Bee fears heighten. Curr. Biol. 18, 682-683. https://doi.org/10.1016/j.sbi.2008.11.004
  46. Yancan, L., Tianle, C., Yunhan, F., 2019. Population genomics and morphological features underlying the adaptive evolution of the eastern honey bee (Apis cerana). BMC Genomics 20, 869. https://doi.org/10.1186/s12864-019-6246-4