DOI QR코드

DOI QR Code

단감원에서 성페로몬 방출기에 의한 애기유리나방의 화학통신 교란 효과

Disruption of Chemical Communication of Synanthedon tenuis (Lepidoptera: Sesiidae) by Sex Pheromone Dispensers in Sweet Persimmon Orchards

  • ;
  • 김준헌 (국립산림과학원 산림병해충연구과) ;
  • 박정규 (경상대학교 식물의학과/농업생명과학연구원(BK21+ Program)) ;
  • 노광현
  • Chiluwal, Kashinath (Nepal Agricultural Research Council (NARC)) ;
  • Kim, Junheon (Forest Insect Pests and Disease Division, National Institute of Forest Science) ;
  • Park, Chung Gyoo (Institute of Life Science/Institute of Agriculture and Life Science (BK21+ Program), Gyeongsang National University) ;
  • Roh, Gwang Hyun (USDA-ARS, US Pacific Basin Agricultural Research Center)
  • 투고 : 2020.09.07
  • 심사 : 2020.10.14
  • 발행 : 2020.12.01

초록

페로몬에 기반한 해충방제 기술은 페로몬이 동정되는 곤충의 수가 지수적으로 증가함에 따라 더욱 성공가능성이 높은 전략이 되고 있다. 이 연구는 애기유리나방, [Synanthedon tenuis (Butler) (Lepidoptera: Sesiidae)]의 성페로몬((Z, Z)-3, 13-octadecadien-1-ol.)에 의한 화학통신교란(pheromone-mediated chemical communication disruption, PCD)의 효과에 대한 것이다. 본 PCD법은 우리나라 전남 순천과 경남 진주의 2곳의 단감 과수원에서 2016년과 2017년에 총 4회 수행되었으며, PCD의 효과는 성페로몬 처리구와 무처리구에서의 평가용 트랩 포획수로 나타내었다. 성페로몬 처리구의 평가용 트랩에 유인된 수컷 성충수는 무처리구에 유인된 수보다 유의하게 적었으며, 유인수 감소효과는 95.2~100% (평균 98.8±1.2%)이었다. 이러한 결과로 볼 때 성페로몬에 기반한 애기유리나방의 방제가 가능할 것으로 판단된다

Pheromone-based techniques are becoming a viable strategy of insect pest management as facilitated by the exponential increase in numbers of pheromone identifications from many insect pests. This is the report on the efficacy of pheromone-mediated chemical communication disruption (PCD) technique against the Korean population of smaller clearwing moths, Synanthedon tenuis (Butler) (Lepidoptera: Sesiidae) using its female sex pheromone component, (Z, Z)-3, 13-octadecadien-1-ol. The PCD trials were carried out four times during 2016 and 2017 in persimmon orchards located at Suncheon and Jinju Cities in Korea, and the PCD efficacy was expressed as the mean differences in the seasonal catches of S. tenuis males in the PCD and control plots. The seasonal male moth catches in monitoring traps installed in the PCD plots were significantly lower as compared with those installed in the control plots. Consequently, the PCD efficacy in the experimental orchards ranged from 95.2-100% with an average efficacy of 98.8 ± 1.2%, revealing a future possibility of pheromone-based management of S. tenuis.

키워드

참고문헌

  1. Abbott, W.S., 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265-267. https://doi.org/10.1093/jee/18.2.265a
  2. Arita, Y., Bae, Y.S., Lee, C.M., Ikeda, M., 2004. Sesiidae (Lepidoptera) of Korea. Trans. Lepid. Soc. Japan. 55, 1-12.
  3. Barnes, M.M., Millar, J.G., Kirsch, P.A., Hawks, D.C., 1992. Codling moth (Lepidoptera: Tortricidae) control by dissemination of synthetic female sex pheromone. J. Econ. Entomol. 85, 1274-1277. https://doi.org/10.1093/jee/85.4.1274
  4. Borchert, D.M., Walgenbach, J.F., 2000. Comparison of pheromone-mediated mating disruption and conventional insecticides for management of tufted apple bud moth (Lepidoptera: Tortricidae). J. Econ. Entomol. 93, 769-776. https://doi.org/10.1603/0022-0493-93.3.769
  5. Byers, J.A., 2007. Simulation of mating disruption and mass trapping with competitive attraction and camouflage. Environ. Entomol. 36, 1328-1338. https://doi.org/10.1603/0046-225X(2007)36[1328:SOMDAM]2.0.CO;2
  6. Carde, R.T., Minks, A.K., 1995. Control of moth pests by mating disruption: successes and constraints. Annu. Rev. Entomol. 40, 559-85. https://doi.org/10.1146/annurev.en.40.010195.003015
  7. Cho, Y.S., Kim, J., Jang, S.A., Park, C.G., 2016. Seasonal occurrence patterns of Synanthedon tenuis and S. bicingulata (Lepidoptera: Sesiidae) in sweet persimmon orchards in the southern part of Korea. Korean J. Appl. Entomol. 55, 297-301. https://doi.org/10.5656/KSAE.2016.06.0.032
  8. El-Sayed, A.M., 2019. The Pherobase: database of insect pheromones and semiochemicals. http://www.pherobase.com (accessed on 22 March, 2019)
  9. Hansen, M., 2015. Codling moth mating disruption reaches a milestone. Good fruit Grower. March 1st 2015 Issue. https://www.goodfruit.com/codling-moth-mating-distruption-reaches-a-milestone (accessed on 11 February, 2019)
  10. Ioriatti, C., Anfora, G., Tasin, M., De Cristofaro, A., Witzgall, P., Lucchi, A., 2011. Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J. Econ. Entomol. 104, 1125-1137. https://doi.org/10.1603/EC10443
  11. Johnson, D.T., Lewis, B.A., Snow, J.W., 1991. Control of grape root borer (Lepidoptera: Sesiidae) by mating disruption with two synthetic sex pheromone compounds. Environ. Entomol. 20, 930-934. https://doi.org/10.1093/ee/20.3.930
  12. Kyparissoudas, D.S., Tsourgianni, A., 1993. Control of Synanthedon (Aegeria) myopaeformis by mating disruption using sex pheromone dispensers in Northern Greece. Entomol. Hell. 11, 35-40. https://doi.org/10.12681/eh.14010
  13. Lee, C.M., Bae, Y.S., Arita, Y., 2004. Morphological description of Synanthedon bicingulata (Staudinger, 1887) in life stages (Lepidoptera: Sesiidae). J. Asia. Pac. Entomol. 7, 177-185. https://doi.org/10.1016/S1226-8615(08)60213-7
  14. Lee, K.C., Park, C.G., 2003. Seasonal occurrence of smaller clearwing moth, Synanthedon tenuis in sweet persimmon orchards. Korean J. Appl. Entomol. 42, 165-167.
  15. Matsumoto, K., Nakamuta, K., Nakashima, T., 2007. Mating disruption controls the cherry tree borer, Synanthedon hector (Butler) (Lepidoptera: Sesiidae) in a steep orchard of cherry trees. J. For. Res. 12, 34-37. https://doi.org/10.1007/s10310-006-0247-2
  16. McGhee, P.S., Epstein, D.L., Gut, L.J., 2011. Quantifying the benefits of area wide pheromone mating disruption programs that target codling moth (Lepidoptera: Tortricidae). Am. Entomol. 57, 94-100. https://doi.org/10.1093/ae/57.2.94
  17. McLaughlin, J.R., Doolittle, R.E., Gentry, C.R., Mitchell, E.R., Tumlinson, J.H., 1976. Response of pheromone traps and disruption of pheromone communication in the lesser peach tree borer and the peach tree borer (Lepidoptera: Sesiidae). J. Chem. Ecol. 2, 73-81. https://doi.org/10.1007/BF00988026
  18. Miller, J.R., Gut, L.J., 2015. Mating disruption for the 21st century: Matching technology with mechanism. Environ. Entomol. 44, 427-453. https://doi.org/10.1093/ee/nvv052
  19. SAS Institute, 2011. SAS user's guide: statistics, version 9.3. SAS Institute Inc. Cary, NC.
  20. Theodorou, V., Skobridis, K., Tzakos, A.G., Ragousis, V., 2007. A simple method for the alkaline hydrolysis of esters. Tetrahedron Lett. 48, 8230-8233. https://doi.org/10.1016/j.tetlet.2007.09.074
  21. Vickers, R.A., 2002. Control of Ichneumonoptera chrysophanes (Meyrick) (Lepidoptera: Sesiidae) by mating disruption in persimmons. Aust. J. Entomol. 41, 316-320. https://doi.org/10.1046/j.1440-6055.2002.00310.x
  22. Weihman, S.W., Liburd, O.E., 2006. Mating disruption and attract-and-kill as reduced-risk strategies for control of grape root borer Vitacea polistiformis (Lepidoptera: Sesiidae) in Florida vineyards. Fla. Entomol. 89, 245-250. https://doi.org/10.1653/0015-4040(2006)89[245:MDAAAR]2.0.CO;2
  23. Welter, S.C., Pickel, C., Millar, J.G., Cave, F., Van Steenwyk, R.A., Dunley, J., 2005. Pheromone mating disruption offers selective management for key pests. Calif. Agric. 59, 16-22. https://doi.org/10.3733/ca.v059n01p16
  24. Witzgall, P., Backman, A.C., Svensson, M., Koch, U., Rama, F., El-Sayed, A., Brauchli, J., Arn, H., Bengtsson, M., Lofqvist, J., 1999. Behavioral observations of codling moth, Cydia pomonella, in orchards permeated with synthetic pheromone. BioControl. 44, 211-237. https://doi.org/10.1023/A:1009976600272
  25. Witzgall, P., Kirsch, L., Cork, A., 2010. Sex pheromones and their impact on insect pest management. J. Chem. Ecol. 36, 80-100. https://doi.org/10.1007/s10886-009-9737-y
  26. Yamanaka, T., 2007. Mating disruption or mass trapping? Numerical simulation analysis of a control strategy for lepidopteran pests. Popul. Ecol. 49, 75-86. https://doi.org/10.1007/s10144-006-0018-0
  27. Yang, C.Y., Lee, H.S., Park, C.G., 2012. Sex pheromone of the smaller clearwing moth Synanthedon tenuis (Butler). J. Chem. Ecol. 38, 1159-1162. https://doi.org/10.1007/s10886-012-0179-6