물-에너지-식량 넥서스를 통한 농공분야의 새로운 다척도 관리방안

Towards New Transboundary Approach through Water-Energy-Food Nexus in Agricultural Engineering

  • LEE, Sanghyun (Research Institute for Hunanity and Nature (RIHN))
  • 발행 : 2020.11.28

초록

키워드

참고문헌

  1. D'Odorico, P., Carr, J., Dalin, C., Deii'Angelo, J., Konar, M., Laio, F., Ridolfi, L., Rosa, L., Suweis, S., Tamea, S. and Tuninetti, M., 2019. Global virtual water trade and the hydrological cycle: patterns. drivers. and socio-environmental impacts. Environmental Research Letters. 14(5). p.053001. https://doi.org/10.1088/1748-9326/ab05f4
  2. Franco, E.G., 2020. The Global Risks Report 2020. In World Economic Forum.
  3. Gleeson, T., Wang-Erlandsson. L., Zipper, S.C., Porkka, M., Jaramillo, F., Gerten, D., Fetzer, I., Cornell. S.E., Piemontese, L., Gordon, L.J., and Rockstrom, J., 2020. The water planetary boundary: interrogation and revision. One Earth, 2(3), pp.223-234. https://doi.org/10.1016/j.oneear.2020.02.009
  4. Hoekstra, A.Y., 2003. Virtual water trade: Proceedings of the International Expert Meeting on Virtual Water Trade. Delft. the Netherlands. December 12-13. 2002, Value of Water Research Report Series No. 12. Delft. the Netherlands: UNESCO-IHE Institute for Water Education.
  5. Hoff, H., 2011. Understanding the Nexus. Background Paper for the Bonn2011 Conference: The Water, Energy and Food Security Nexus. Stockholm: Stockholm Environment Institute.
  6. Lee, S.H., Mohtar, R.H., Choi, J.Y. and Yoo, S.H., 2016. Analysis of the characteristics of global virtual water trade network using degree and eigenvector centrality, with a focus on food and feed crops. 1foldr Import 2019--10-08 Batch 12.
  7. Lee, S.H., Taniguchi, M., Mohtar, R.H., Choi, J.Y. and Yoo, S.H., 2018. An analysis of the water-energy-food-land requirements and CO2 emissions for food security of rice in Japan. Sustainability, 10(9). p.3354. https://doi.org/10.3390/su10093354
  8. Lee, S.H., Choi, J.Y., Hur, S.O., Taniguchi, M., Masuhara, N., Kim, K.S., Hyun, S., Choi, E., Sung, J.H. and Yoo, S.H., 2020. Food-centric interlinkages in agricultural food-energy-water nexus under climate change and irrigation management. Resources. Conservat ion and Recycling, 163. p.105099. https://doi.org/10.1016/j.resconrec.2020.105099
  9. Mohtar, R.H. and Lawford, R., 2016. Present and future of the water-energy-food nexus and the role of the community of practice. Journal of Environmental Studies and Sciences. 6(1). pp.192-199. https://doi.org/10.1007/s13412-016-0378-5
  10. Susnik, J., 2018. Data-driven quantification of the global water-energy-food system. Resources. Conservation and Recycling, 133, pp.179-190. https://doi.org/10.1016/j.resconrec.2018.02.023
  11. Zipper, S.C., Jaramillo, F., Wang-Erlandsson, L., Cornell, S.E., Gleeson, T., Porkka, M., Hayha, T., Crepin, A.S., Fetzer, I., Gerten, D. and Hoff, H., 2020. Integrating the water planetary boundary with water management from local to global scales. Earth's Future. 8(2), e2019EF001377.