DOI QR코드

DOI QR Code

Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory

  • Rouabhia, Abdelkrim (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Chikh, Abdelbaki (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Bourada, Fouad (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Heireche, Houari (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Tounsi, Abdeldjebbar (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Kouider Halim, Benrahou (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Al-Zahrani, Mesfer Mohammad (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
  • 투고 : 2020.04.04
  • 심사 : 2020.06.01
  • 발행 : 2020.12.25

초록

The buckling properties of a single-layered graphene sheet (SLGS) are examined using nonlocal integral first shear deformation theory (FSDT) by incorporating the influence of visco-Pasternak's medium. This model contains only four variables, which is even less than the conventional FSDT. The visco-Pasternak's medium is introduced by considering the damping influence to the conventional foundation model which modeled by the linear Winkler's coefficient and Pasternak's (shear) foundation coefficient. The nanoplate under consideration is subjected to compressive in- plane edge loads per unit length. The impacts of many parameters such as scale parameter, aspect ratio, the visco-Pasternak's coefficients, damping parameter, and mode numbers on the stability investigation of the SLGSs are examined in detail. The obtained results are compared with the corresponding available in the literature.

키워드

참고문헌

  1. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
  2. Aghababaei, R. and Reddy, J.N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326, 277-289. doi:10.1016/j.jsv.2009.04.044.
  3. Ahmed, S.M., Zhou, B., Wang, Y., Yang, H., Zheng, Y.P. and Shi Bin, X. (2020), "Preparation, Characterization of activated carbon fiber (ACF) from loofah and its application in composite vertical flow constructed wetlands for Tetracycline removal from water", Membrane Water Treatment, 11(4), 313-321. http://dx.doi.org/10.12989/mwt.2020.11.4.313.
  4. Akbas, S.D. (2018), "Forced vibration analysis of cracked nanobeams", J. Braz. Soc. Mech. Sci. Eng., 40(8), 392. doi:10.1007/s40430-018-1315-1.
  5. Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/ANR.2020.8.4.277.
  6. Akbas, S.D. (2018), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-243. https://doi.org/10.12989/anr.2018.6.3.219.
  7. Akgoz, B. and Civalek, O. (2013), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta Mechanica, 224(9), 2185-2201. doi:10.1007/s00707-013-0883-5.
  8. Akgoz, B. and Civalek, O. (2014), "A new trigonometric beam model for buckling of strain gradient microbeams", Int. J. Mech. Sci., 81, 88-94. doi:10.1016/j.ijmecsci.2014.02.013.
  9. Akgoz, B. and Civalek, O. (2012), "Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory", Mater. Design, 42, 164-171. https://doi.org/10.1016/j.matdes.2012.06.002.
  10. Analooei, H.R., Azhari, M. and Heidarpour, A. (2013), "Elastic buckling and vibration analyses of orthotropic nanoplates using nonlocal continuum mechanics and spline finite strip method", Appl. Math. Model., 37, 6703-6717. https://doi.org/10.1016/j.apm.2013.01.051.
  11. Ansari, R. and Sahmani, S. (2013), "Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations", Appl. Math. Model., 37, 7338-7351. https://doi.org/10.1016/j.apm.2013.03.004.
  12. Ansari, R. and Rouhi, H. (2012), "Explicit analytical expressions for the critical buckling stresses in a monolayer graphene based on nonlocal elasticity", Solid State Commun., 152, 56-59. https://doi.org/10.1016/j.ssc.2011.11.004.
  13. Arash, B., Wang, Q. and Duan, W.H. (2011), "Detection of gas atoms via vibration of graphenes", Phys. Lett. A, 375, 2411-2415. https://doi.org/10.1016/j.physleta.2011.05.009.
  14. Arash, B., Wang, Q. and Liew, K.M. (2012), "Wave propagation in graphene sheets with nonlocal elastic theory via finite element formulation", Comput. Method. Appl. M., 223-224, 1-9. https://doi.org/10.1016/j.cma.2012.02.002.
  15. Assadi, A., Farshi, B. and Alinia-ZiaZi, A. (2010), "Size dependent dynamic an alysis of nanoplates", J. Appl. Phys., 107, 124310. https://doi.org/10.1063/1.3437041.
  16. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. http://dx.doi.org/10.12989/scs.2019.30.6.603.
  17. Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Design, 3(3), 289-302. http://dx.doi.org/10.12989/acd.2018.3.3.289.
  18. Barati, M.R. (2017), "Investigating dynamic response of porous inhomogeneous nanobeams on hybrid Kerr foundation under hygro-thermal loading", Appl. Phys. A., 123, 332. https://doi.org/10.1007/s00339-017-0908-3.
  19. Basua, S. and Bhattacharyya, P. (2012), "Recent developments on graphene and graphene oxide based solid state gas sensors", Sens. Actuat. B, 173, 1-21. doi:10.1016/j.snb.2012.07.092.
  20. Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Design, 3(3), 213-232. https://doi.org/10.12989/acd.2018.3.3.213.
  21. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339-356. http://dx.doi.org/10.12989/anr.2018.6.4.339.
  22. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2019a), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng, 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021.
  23. Bensattalah, T., Zidour, M., Daouadji, T.H. and Bouakaz, K. (2019b), "Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix", Struct. Eng. Mec., 70(3), 269-277. https://doi.org/10.12989/sem.2019.70.3.269.
  24. Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Adda Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.
  25. Bunch, J.S., van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbsum, D.M., Parpia, J.M., et al. (2007), "Electromechanical resonators from graphene sheets", Science, 315, 490-493. DOI: 10.1126/science.1136836.
  26. Chami, K., Messafer, T. and Hadji, L. (2020), "Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation", Earthq. Struct., 19(2), 91-101. https://doi.org/10.12989/eas.2020.19.2.091
  27. Dai, H.L., Wang, Y.K. and Wang, L. (2015), "Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory", Int. J. Eng. Sci., 94, 103-112. https://doi.org/10.1016/j.ijengsci.2015.05.007.
  28. Daneshmehr, A., Rajabpoor, A. and Hadi, A. (2015), "Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with higher order theories", Int. J. Eng. Sci., 95, 23-35. https://doi.org/10.1016/j.ijengsci.2015.05.011.
  29. Daneshmehr, A., Rajabpoor, A. and Pourdavood, M. (2014), "Stability of size dependent functionally graded nanoplates based on nonlocal elasticity and higher order plate theories and different boundary conditions", Int. J. Eng. Sci., 82, 84-100. https://doi.org/10.1016/j.ijengsci.2014.04.017.
  30. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Design, 2(1), 57-69. http://dx.doi.org/10.12989/acd.2017.2.1.057.
  31. Eichler, A., Moser, J., Chaste, J., Zdrojek, M., Wilson-Rae, I. and Bachtold, A. (2011), "Nonlinear dampingin mechanical resonators made from carbon nanotubes and graphene", Nature Nanotechnology, 6, 339-342. https://doi.org/10.1038/nnano.2011.71.
  32. El Said, N. and Kassem, A.T. (2018), "Efficient removal of radioactive waste from solution by two-dimensional activated carbon/Nano hydroxyapatite composites", Membrane Water Treatment, 9(5), 327-334. http://dx.doi.org/10.12989/mwt.2018.9.5.327
  33. Eltaher, M.A., Agwa, M. and Kabeel, A. (2018), "Vibration analysis of material size-dependent CNTs using energy equivalent model", J. Appl. Comput. Mech., 4, 75-86. DOI :10.22055/JACM.2017.22579.1136.
  34. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  35. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
  36. Esmaeili, M. and Tadi Beni, Y. (2019), "Vibration and buckling analysis of functionally graded flexoelectric smart beam", J. Appl. Comput. Mech., 5(5), 900-917. doi:10.22055/jacm.2019.27857.1439.
  37. Evoy, S., Carr, D.W., Sekaric, L., Olkhovets, A., Parpia, J.M. and Craighead, H.G. (1999), "Nanofabrication and electrostatic operation of single-crystal silicon paddle oscillators", J. Appl. Phys., 86, 6072-6077. https://doi.org/10.1063/1.371656.
  38. Freund, L.B. and Suresh, S. (2003), "Thin film materials", Cambridge: Cambridge University Press.
  39. Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037.
  40. Ghandourah, E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. http://dx.doi.org/10.12989/scs.2020.36.3.293
  41. Ghayesh, M.H. and Farokhi, H. (2015), "Nonlinear dynamics of microplates", Int. J. Eng. Sci., 86, 60-73. https://doi.org/10.1016/j.ijengsci.2014.10.004.
  42. Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013), "Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory", Int. J. Eng. Sci., 63, 52-60. https://doi.org/10.1016/j.ijengsci.2012.12.001.
  43. Ghorbanpour Arani, A., Abdollahian, M. and Jalaei, M.H. (2015), "Vibration of bioliquid-filled microtubules embedded in cytoplasm including surface effects using modified couple stress theory", J. Theor. Biology, 367, 29-38. https://doi.org/10.1016/j.jtbi.2014.11.019.
  44. Ghorbanpour Arani, A. and Jalaei, M.H. (2015), "Nonlocal dynamic response of embedded single-layered graphene sheet via analytical approach", J. Eng. Math., 98(1), 129-144. doi:10.1007/s10665-015-9814-x.
  45. Ghorbanpour Arani, A. and Jalaei, M.H. (2016), "Transient behavior of an orthotropic graphene sheet resting on orthotropic visco-Pasternak foundation", Int. J. Eng. Sci., 103, 97-113. https://doi.org/10.1016/j.ijengsci.2016.02.006.
  46. Ghorbanpour Arani, A., Maboudi, M.J. and Kolahchi, R. (2014), "Nonlinear vibration analysis of visco elastically coupled DLAGS-system", Eur. J. Mech. A: Solids, 45, 185-197. DOI: 10.1016/j.euromechsol.2013.12.006.
  47. Golmakani, M.E. and Rezatalab, J. (2014), "Nonlinear bending analysis of orthotropic nanoscale plates in an elastic matrix based on nonlocal continuum mechanics", Compos. Struct., 111, 85-97. https://doi.org/10.1016/j.compstruct.2013.12.027.
  48. Golmakani, M.E. and Rezatalab, J. (2015), "Nonuniform biaxial buckling of orthotropic nanoplates embedded in an elastic medium based on nonlocal Mindlin plate theory", Compos. Struct., 119, 238-250. https://doi.org/10.1016/j.compstruct.2014.08.037.
  49. Gurses, M., Akgoz, B. and Civalek, O. (2012), "Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation", Appl. Math. Comput., 219(6), 3226-3240. doi:10.1016/j.amc.2012.09.062.
  50. Hadji, L. (2020a), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253
  51. Hadji, L. (2020b), "Vibration analysis of FGM beam: Effect of the micromechanical models", Coupled Syst. Mech., 9(3), 265-280. https://doi.org/10.12989/csm.2020.9.3.265.
  52. Hadji, L. and Safa, A. (2020), "Bending analysis of softcore and hardcore functionally graded sandwich beams", Earthq. Struct., 18(4), 481-492. https://doi.org/10.12989/eas.2020.18.4.481.
  53. Hadji, L. and Avcar, M. (2021), "Free vibration analysis of FG porous sandwich plates under various boundary conditions", J. Appl. Comput. Mech., 1-15. https://doi.org/10.22055/JACM.2020.35328.2628.
  54. Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and small-scale effects on vibration of embedded armchair single-walled carbon nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24.
  55. Hosseini-Hashemi, S., Kermajani, M. and Nazemnezhad, R. (2015), "An analytical study on the buckling and free vibration of rectangular nanoplates using nonlocal third-order shear deformation plate theory", Eur. J. Mech. A/Solids, 51, 29-43. https://doi.org/10.1016/j.euromechsol.2014.11.005.
  56. Jafari Fesharaki, J. and Roghani, M. (2019), "Elastic Behavior of Functionally Graded Two Tangled Circles Chamber", J. Appl. Comput. Mech., 5(4), 667-679. doi:10.22055/jacm.2019.27058.1372.
  57. Ji, Y., Choe, M., Cho, B., Song, S., Yoon, J., Ko, H.C., et al. (2012), "Organic nonvolatile memory devices with charge trapping multilayer graphene film", Nanotechnology, 23, 105202. doi: 10.1088/0957-4484/23/10/105202.
  58. Kananipour, H. (2014), "Static analysis of nanoplates based on the nonlocal Kirchhoff and Mindlin plate theories using DQM", Latin Am. J. Solids Struct., 11, 1709-1720. https://doi.org/10.1590/S1679-78252014001000001.
  59. Karami, B. and Janghorban, M. (2019), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002.
  60. Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., 7(1), 51-61. https://doi.org/10.12989/anr.2019.7.1.051.
  61. Karami, B., Shahsavari, D. and Janghorban, M. (2019), "On the dynamics of porous doubly-curved nanoshells", Int. J. Eng. Sci., 143, 39-55. https://doi.org/10.1016/j.ijengsci.2019.06.014.
  62. Khorshidi, K., Asgari, T. and Fallah, A. (2015), "Free vibrations analysis of functionally graded rectangular nano-plates based on nonlocal exponential shear deformation theory", Mech. Adv. Compos. Struct., 2, 79-93. Doi: 10.22075/MACS.2015.395.
  63. Kong, S., Zhou, S., Nie, Z. and Wang, K. (2009), "Static and dynamic analysis of microbeams based on strain gradient elasticity theory", Int. J. Eng. Sci., 47, 487-498. https://doi.org/10.1016/j.ijengsci.2008.08.008.
  64. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51, 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
  65. Lei, Y., Adhikari, S. and Friswell, M.I. (2013), "Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams", Int. J. Eng. Sci., 66-67, 1-13. https://doi.org/10.1016/j.ijengsci.2013.02.004.
  66. Liew, K.M., He, X.Q. and Kitipornchai, S. (2006), "Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix", Acta Materialia, 54, 4229-4236. https://doi.org/10.1016/j.actamat.2006.05.016.
  67. Liu, C.C. and Chen, Z.B. (2014), "Dynamic analysis of finite periodic nanoplate structures with various boundaries", Physica E, 60, 139-146. https://doi.org/10.1016/j.physe.2014.02.016.
  68. Lu, G., Ocola, L.E. and Chen, J. (2009), "Reduced graphene oxide for room-temperature gas sensors", Nanotechnology, 20, 445502. https://doi.org/10.1088/0957-4484/20/44/445502.
  69. Malekzadeh, P. and Shojaee, M. (2013), "Free vibration of nanoplates based on a nonlocal two-variable plate theory", Compos. Struct., 95, 443-452. https://doi.org/10.1016/j.compstruct.2012.07.006.
  70. Mantari, J.L. and Granados, E.V. (2015), "A refined FSDT for the static analysis of functionally graded sandwich plates", Thin-Wall. Struct., 90, 150-158. https://doi.org/10.1016/j.tws.2015.01.015.
  71. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. http://dx.doi.org/10.12989/anr.2019.7.3.181.
  72. Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
  73. Mohammad-Abadi, M. and Daneshmehr, A.R. (2014), "Size dependent buckling analysis of microbeams based on modified couple stress theory with higher order theories and general boundary conditions", Int. J. Eng. Sci., 74, 1-14. https://doi.org/10.1016/j.ijengsci.2013.08.010.
  74. Mohammadi, M., Farajpour, A., Goodarzi, M. and Shehni nezhadpour, H. (2014), "Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium", Comput. Mater. Sci., 82, 510-520. https://doi.org/10.1016/j.commatsci.2013.10.022.
  75. Murmu, T. and Adhikari, S. (2013), "Nonlocal mass nanosensors based on vibrating monolayer graphene sheets", Sensors Actuat. B: Chemical, 188, 1319-1327. https://doi.org/10.1016/j.snb.2013.07.051.
  76. Naderi, A. and Saidi, A.R. (2014), "Nonlocal postbuckling analysis of graphene sheets in a nonlinear polymer medium", Int. J. Eng. Sci., 81, 49-65. https://doi.org/10.1016/j.ijengsci.2014.04.004.
  77. Najar, F., El-Borgi, S., Reddy, J.N. and Mrabet, K. (2015), "Nonlinear nonlocal analysis of electrostatic nanoactuators", Compos. Struct., 120, 117-128. https://doi.org/10.1016/j.compstruct.2014.09.058.
  78. Narendar, S. (2011), "Buckling analysis of micro-nano-scale plates based on two-variable refined plate theory incorporating nonlocal scale effects", Compos. Struct., 93, 3093-3103. DOI:10.1016/J.COMPSTRUCT.2011.06.028.
  79. Nebab, M., Ait Atmane, H., Bennai, R. and Tahar, B. (2019), ''Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory'', Earthq. Struct., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447.
  80. Nebab, M., Benguediab, S., Ait Atmane, H. and Bernard, F. (2020), ''A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations'', Geomech. Eng., 22(5), 415-431. http://dx.doi.org/10.12989/gae.2020.22.5.415.
  81. Panjehpour, M., Eric Woo Kee Loh and Deepak, T.J. (2018), "Structural Insulated Panels: State-of-the-Art", Trends civil Eng. Architecture, 3(1) 336-340. Doi:10.32474/TCEIA.2018.03.000151.
  82. Pouresmaeeli, S., Ghavanloo, E. and Fazelzadeh, S.A. (2013), "Vibration analysis of viscoelastic orthotropic nanoplates resting on viscoelastic medium", Compos. Struct., 96, 405-410. https://doi.org/10.1016/j.compstruct.2012.08.051.
  83. Pradhan, S.C. and Kumar, A. (2011), "Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method", Compos. Struct., 93, 774-779. https://doi.org/10.1016/j.compstruct.2010.08.004.
  84. Pradhan, S.C. and Phadikar, J.K. (2009), "Nonlocal elasticity theory for vibration of nanoplates", J. Sound Vib., 325, 206-223. https://doi.org/10.1016/j.jsv.2009.03.007.
  85. Pradhan, S.C. and Murmu, T. (2009), "Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics", Comput. Mater. Sci., 47, 268-274. https://doi.org/10.1016/j.commatsci.2009.08.001.
  86. Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
  87. Ramirez, D., Cuba, L., Mantari, J. and Arciniega, R. (2019), "Bending and free vibration analysis of functionally graded plates via optimized non-polynomial higher order theories", J. Appl. Comput. Mech., 5(2), 281-298. doi:10.22055/jacm.2018.25177.1237.
  88. Reddy, C.D., Rajendran, S. and Liew, K.M. (2006), "Equilibrium configuration and continuum elastic properties of finite sized graphene", Nanotechnology, 17, 864-870. https://doi.org/10.1088/0957-4484/17/3/042.
  89. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
  90. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45, 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
  91. Reddy, J.N. and El-Borgi, S. (2014), "Eringen's nonlocal theories of beams accounting for moderate rotations", Int. J. Eng. Sci., 82, 159-177. https://doi.org/10.1016/j.ijengsci.2014.05.006.
  92. Safarpour, M., Ghabussi, A., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM", ThinWall. Struct., 150, 106683. https://doi.org/10.1016/j.tws.2020.106683.
  93. Sakhaee-Pour, A., Ahmadian, M.T. and Vafai, A. (2008), "Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors", Solid State Commun., 145, 168-172. https://doi.org/10.1016/j.ssc.2007.10.032.
  94. Samaei, A.T., Abbasion, S. and Mirsayar, M.M. (2011), "Buckling analysis of a single-layer graphene sheet embedded in an elastic medium based on nonlocal Mindlin plate theory", Mech. Res. Commun., 38, 481-485. https://doi.org/10.1016/j.mechrescom.2011.06.003.
  95. Sarrami-Foroushani, S. and Azhari, M. (2014), "Nonlocal vibration and buckling analysis of single and multi-layered graphene sheets using finite strip method including vander Waals effects", Physica E, 57, 83-95. https://doi.org/10.1016/j.physe.2013.11.002.
  96. Sayyad, A. and Ghumare, S. (2019), "A New Quasi-3D Model for Functionally Graded Plates", J. Appl. Comput. Mech., 5(2), 367-380. doi: 10.22055/jacm.2018.26739.1353.
  97. Scarpa, F., Adhikari, S., Gil, A.J. and Remillat, C. (2010), "The bending of single layer graphene sheets: The lattic versus continuum approach", Nanotechnology, 21, 125702-1-125702-9. DOI: 10.1088/0957-4484/21/12/125702.
  98. Sedighi, H.M. (2014), "Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory", Acta Astronautica, 95, 111-123. doi:10.1016/j.actaastro.2013.10.020.
  99. Sedighi, H.M., Daneshmand, F. and Abadyan, M. (2015b), "Modified model for instability analysis of symmetric FGM double-sided nano-bridge: Corrections due to surface layer, finite conductivity and size effect", Compos. Struct., 132, 545-557. doi:10.1016/j.compstruct.2015.05.076.
  100. Sedighi, H.M., Keivani, M. and Abadyan, M. (2015a) "Modified continuum model for stability analysis of asymmetric FGM double-sided NEMS: Corrections due to finite conductivity, surface energy and nonlocal effect", Compos. Part B: Eng., 83, 117-133. doi:10.1016/j.compositesb.2015.08.029.
  101. Sedighi, H.M., Ouakad, H.M., Dimitri, R. and Tornabene, F. (2020), "Stress-driven nonlocal elasticity for the instability analysis of fluid-conveying C-BN hybrid-nanotube in a magneto-thermal environment", Physica Scripta, 95(6). https://doi.org/10.1088/1402-4896/ab793f.
  102. Sedighi, H.M. and Malikan, M. (2020), "Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magnetothermal environment", Phys. Scr., 95, 055218. https://doi.org/10.1088/1402-4896/ab7a38.
  103. Sellam, S., Draiche, K., Tlidji, Y., Addou, F.Y. and Benachour, A. (2020), "A simple analytical model for free vibration and buckling analysis of orthotropic rectangular plates", Struct. Eng. Mech., 75(2), 157-174. https://doi.org/10.12989/SEM.2020.75.2.157.
  104. Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. http://dx.doi.org/10.12989/anr.2019.7.5.365.
  105. Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "On the Vibrations and Stability of Moving Viscoelastic Axially Functionally Graded Nanobeams", Materials, 13(7), 1707. doi:10.3390/ma13071707.
  106. Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
  107. Timesli, A. (2020a), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. http://dx.doi.org/10.12989/cac.2020.26.1.053
  108. Timesli, A. (2020b), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano Res., 9(2), 69-82. https://doi.org/10.1007/s42452-020-2182-9.
  109. Wang, L. (2010), "Wave propagation of fluid-conveying singlewalled carbon nanotubes via gradient elasticity theory", Comput. Mater. Sci., 49, 761-766. https://doi.org/10.1016/j.commatsci.2010.06.019.
  110. Wang, Y.Z. and Li, F.M. (2012), "Static bending behaviors of nanoplate embedded in elastic matrix with small scale effects", Mech. Res. Commun., 41, 44-48. https://doi.org/10.1016/j.mechrescom.2012.02.008.
  111. Zenkour, A.M., (2016), "Buckling of a single-layered graphene sheet embedded in visco-Pasternak's medium via nonlocal firstorder theory", Adv. Nano Res., 4(4), 309-326. http://dx.doi.org/10.12989/anr.2016.4.4.309.

피인용 문헌

  1. New Finite Modeling of Free and Forced Vibration Responses of Piezoelectric FG Plates Resting on Elastic Foundations in Thermal Environments vol.2021, 2020, https://doi.org/10.1155/2021/6672370
  2. Finite Element Modeling of Stress Behavior of FGM Nanoplates vol.2021, 2020, https://doi.org/10.1155/2021/9983024
  3. Free Vibration Investigations of Rotating FG Beams Resting on Elastic Foundation with Initial Geometrical Imperfection in Thermal Environments vol.2021, 2020, https://doi.org/10.1155/2021/5533920
  4. A Refined Model for Analysis of Beams on Two-Parameter Foundations by Iterative Method vol.2021, 2021, https://doi.org/10.1155/2021/5562212
  5. On a Couple of Nonlocal Singular Viscoelastic Equations with Damping and General Source Terms: Blow-Up of Solutions vol.2021, 2021, https://doi.org/10.1155/2021/9914386
  6. Computational analysis of the nonlinear vibrational behavior of perforated plates with initial imperfection using NURBS-based isogeometric approach vol.8, pp.5, 2020, https://doi.org/10.1093/jcde/qwab043
  7. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157