참고문헌
- ASCE 7 (2016), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society American Society of Civil; Reston, Virginia, USA.
- ASCE 41 (2006), Seismic rehabilitation of existing buildings, American Society of Civil Engineers; Reston, Virginia, USA.
- Braconi, A., Morelli, F. and Salvatore, W. (2012), "Development, design and experimental validation of a steel self-centering device (SSCD) for seismic protection of buildings", Bull. Earthq. Eng 10(6), 1915-1941. https://doi.org/10.1007/s10518-012-9380-9.
- Chou, C.C., Wu, T.H., Beato, A.R.O., Chung, P.T. and Chen, Y.C. (2016), "Seismic design and tests of a full-scale one-story onebay steel frame with a dual-core self-centering brace", Eng. Struct., 111, 435-450. https://doi.org/10.1016/j.engstruct.2015.12.007.
- Christopoulos, C., Filiatrault, A., Uang, C.M. and Folz, B. (2002), "Posttensioned energy dissipating connections for moment-resisting steel frames", J. Struct. Eng., 128(9), 1111-1120. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1111).
- Christopoulos, C., Tremblay, R., Kim, H.J. and Lacerte, M. (2008), "Self-centering energy dissipative bracing system for the seismic resistance of structures: development and validation", J. Struct. Eng., 134(1), 96-107. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(96).
- DesRoches, R., Taftali, B. and Ellingwood, B.R. (2010), "Seismic performance assessment of steel frames with shape memory alloy connections Part I-analysis and seismic demands", J. Earthq. Eng., 14(4), 471-486. https://doi.org/10.1080/13632460903301088.
- Erochko, J., Christopoulos, C. and Tremblay, R. (2012), "Design and testing of an enhanced-elongation telescoping self-centering energy-dissipative (T-SCED) brace", Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, September.
- Erochko, J., Christopoulos, C., Tremblay, R. and Kim, H. J. (2013), "Shake table testing and numerical simulation of a self-centering energy dissipative braced frame", Earthq. Eng. Struct. D., 42(11), 1617-1635. https://doi.org/10.1002/eqe.2290.
- FEMA P695 (2009), Quantification of building seismic performance factors. Rep. FEMA P695, Federal Emergency Management Agency, Washington, D.C.
- HAZUS-MH (2003), Multi-hazard Loss Estimation Methodology, Earthquake Model, HAZUS-MH MR1, Technical Manual, Washington DC.
- Kammula, V., Erochko, J., Kwon, O.S. and Christopoulos, C. (2014), "Application of hybrid‐simulation to fragility assessment of the telescoping self‐centering energy dissipative bracing system", Earthq. Eng. Struct. D., 43(6), 811-830. https://doi.org/10.1002/eqe.2374.
- Kiani, A., Mansouri, B. and Moghadam, A.S. (2016), "Fragility curves for typical steel frames with semi-rigid saddle connections", Journal of Constructional Steel Research, 118, 231-242. https://doi.org/10.1016/j.jcsr.2015.11.001
- Kim, H. J., and Christopoulos, C. (2008), "Friction damped posttensioned self-centering steel moment-resisting frames", J. Struct. Eng., 134(11), 1768-1779. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:11(1768).
- Kitayama, S. and Constantinou, M.C. (2017), "Fluidic selfcentering devices as elements of seismically resistant structures: description, testing, modeling, and model validation", J. Struct. Eng., 143(7), 04017050. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001787.
- McCormick, J., Aburano, H., Ikenaga M. and Nakashima, M. (2008), "Permissible residual deformation levels for building structures considering both safety and human elements", Proceedings of the 14th World Conference on Earthquake Engineering, Lisbon, Portugal, October.
- Miller, D.J., Fahnestock, L.A. and Eatherton, M.R. (2012), "Development and experimental validation of a nickel-titanium shape memory alloy self-centering buckling-restrained brace", Eng. Struct., 40, 288-298. https://doi.org/10.1016/j.engstruct.2012.02.037.
- OpenSees (2012), "The open system for earthquake engineering simulation", http://opensees.berekley.edu/
- Qiu, C.X. and Zhou, S. (2016), "High-mode effects on seismic performance of multi-story self-centering braced steel frames", J. Constr. Steel Res., 119, 133-143. https://doi.org/10.1016/j.jcsr.2015.12.008.
- Qiu, C.X. and Zhu, S. (2017), "Performance-based seismic design of self-centering steel frames with SMA-based braces", Eng. Struct., 130, 67-82. https://doi.org/10.1016/j.engstruct.2016.09.051.
- Ricles, J.M., Sause, R., Garlock, M.M. and Zhao, C. (2001), "Posttensioned seismic-resistant connections for steel frames", J. Struct. Eng., 127(2), 113-121. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:2(113).
- Tenchini, A., D'Aniello, M., Rebelo, C., Landolfo, R., da Silva, L. S. and Lima, L. (2014), "Seismic performance of dual-steel moment resisting frames", J. Constr. Steel Res., 101, 437-454. https://doi.org/10.1016/j.jcsr.2014.06.007.
- Tremblay, R., Lacerte, M. and Christopoulos, C. (2008), "Seismic response of multistory buildings with self-centering energy dissipative steel braces", J. Struct. Eng., 134(1), 108-120. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(108).
- Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. D., 31(3), 491-514. https://doi.org/10.1002/eqe.141.
- Wang, W., Fang, C., Zhao, Y., Sause, R., Hu, S. and Ricles, J., (2019), "Self-centering friction spring dampers for seismic resilience", Earthq. Eng. Struct. D., 48(9), 1045-1065. https://doi.org/10.1002/eqe.3174.
- Wiebe, L. and Christopoulos, C. (2011). "Using Bezier curves to model gradual stiffness transitions in nonlinear elements: Application to self‐centering systems", Earthq. Eng. Struct. D., 40(14), 1535-1552. https://doi.org/10.1002/eqe.1099.
- Wolski, M., Ricles, J.M. and Sause, R. (2009), "Experimental study of a self-centering beam-column connection with bottom flange friction device", J. Struct. Eng., 135(5), 479-488. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000006.
- Xie, X.S., Xu, L.H. and Li, Z.X. (2019), "Mechanics of a variable damping self-centering brace: Seismic performance and failure modes", Steel Compos. Struct., 31(2), 149-158. https://doi.org/10.12989/scs.2019.31.2.149.
- Xu, L.H., Fan, X.W., Lu, D C. and Li, Z.X. (2016a), "Hysteretic behavior studies of self-centering energy dissipation bracing system", Steel Compos. Struct., 20(6), 1205-1219. https://doi.org/10.12989/scs.2016.20.6.1205.
- Xu, L.H., Fan, X.W. and Li, Z.X. (2016b), "Development and experimental verification of a pre-pressed spring self-centering energy dissipation brace", Eng. Struct., 127, 49-61. https://doi.org/10.1016/j.engstruct.2016.08.043.
- Xu, L.H., Fan, X.W. and Li, Z.X. (2017), "Cyclic behavior and failure mechanism of self‐centering energy dissipation braces with pre‐pressed combination disc springs", Earthq. Eng. Struct. D., 46(7), 1065-1080. https://doi.org/10.1002/eqe.2844.
- Xu, L.H., Xie, X.S. and Li, Z.X. (2018a), "A self-centering brace with superior energy dissipation capability: development and experimental study", Smart Mater. Struct., 27(9), 095017. https://doi.org/10.1088/1361-665X/aad5b0
- Xu, L.H., Xie, X.S. and Li, Z.X. (2018b), "Development and experimental study of a self-centering variable damping energy dissipation brace", Eng. Struct., 160, 270-280. https://doi.org/10.1016/j.engstruct.2018.01.051.