References
- Kandasamy Ganeshlenin, Maity Dipak. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. International journal of pharmaceutics. 2015;496(2):191-218. https://doi.org/10.1016/j.ijpharm.2015.10.058
- Dulinska-Litewka, Joanna, et al. Superparamagnetic iron oxide nanoparticles-Current and prospective medical applications. Materials. 2019;12(4):617. https://doi.org/10.3390/ma12040617
- Bae Ki Hyun, et al. Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS nano. 2012;6(6):5266-73. https://doi.org/10.1021/nn301046w
- Kolen'ko, Yury V, et al. Large-scale synthesis of colloidal Fe3O4 nanoparticles exhibiting high heating efficiency in magnetic hyperthermia. The Journal of Physical Chemistry C. 2014; 118(16): 8691-701. https://doi.org/10.1021/jp500816u
- Nam Nguyen Hoai, et al. Folate attached, curcumin loaded Fe3O4 nanoparticles: A novel multifunctional drug delivery system for cancer treatment. Materials Chemistry and Physics. 2016;172:98-104. https://doi.org/10.1016/j.matchemphys.2015.12.065
- Li Li, et al. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics. 2013;3(8):595. https://doi.org/10.7150/thno.5366
- Zhang Dianbao, et al. Polyethyleneimine-coated Fe3O4 nanoparticles for efficient siRNA delivery to human mesenchymal stem cells derived from different tissues. Science of Advanced Materials. 2015;7(6):1058-64. https://doi.org/10.1166/sam.2015.2178
- Gao Lizeng, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature nanotechnology. 2007;2(9):577-83. https://doi.org/10.1038/nnano.2007.260
- Yu Faquan, et al. The artificial peroxidase activity of magnetic iron oxide nanoparticles and its application to glucose detection. Biomaterials. 2009;30(27):4716-22. https://doi.org/10.1016/j.biomaterials.2009.05.005
- Yee Ying Chuin, et al. Colorimetric analysis of glucose oxidase-magnetic cellulose nanocrystals (CNCs) for glucose detection. Sensors. 2019;19(11):2511. https://doi.org/10.3390/s19112511
- Vallabani Nv Srikanth, Karakoti Ajay S, Singh Sanjay. ATPmediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme: one step detection of blood glucose at physiological pH. Colloids and Surfaces B: Biointerfaces. 2017;153:52-60. https://doi.org/10.1016/j.colsurfb.2017.02.004
- Tanaka Shunsuke, et al. Mesoporous iron oxide synthesized using poly (styrene-b-acrylic acid-b-ethylene glycol) block copolymer micelles as templates for colorimetric and electrochemical detection of glucose. ACS applied materials & interfaces. 2018;10(1):1039-49. https://doi.org/10.1021/acsami.7b13835
- Jang Hongje, Min Dal-Hee. Highly precise plasmonic and colorimetric sensor based on enzymatic etching of nanospheres for the detection of blood and urinary glucose. RSC Advances. 2015;5(19):14330-2. https://doi.org/10.1039/C4RA15485A
- Dadfar Seyed Mohammadali, et al. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Advanced drug delivery reviews. 2019;138:302-25. https://doi.org/10.1016/j.addr.2019.01.005
- Wang Manlin, et al. Fe3O4@ β-CD nanocomposite as heterogeneous Fenton-like catalyst for enhanced degradation of 4-chlorophenol (4-CP). Applied Catalysis B: Environmental. 2016;188(5):113-22. https://doi.org/10.1016/j.apcatb.2016.01.071
- Xu Lejin, Jianlong Wang. Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles. Applied Catalysis B: Environmental. 2012;123:117-26. https://doi.org/10.1016/j.apcatb.2012.04.028
- Huang Xiaopeng, et al. Hematite facet confined ferrous ions as high efficient Fenton catalysts to degrade organic contaminants by lowering H2O2 decomposition energetic span. Applied Catalysis B: Environmental. 2016;181:127-37. https://doi.org/10.1016/j.apcatb.2015.06.061
- Greenwood, Norman Neill, Alan Earnshaw. Chemistry of the Elements. Elsevier, 2012.
- Makaram Prashanth, Owens Dawn, Aceros Juan. Trends in nanomaterial-based non-invasive diabetes sensing technologies. Diagnostics. 2014;4(2):27-46. https://doi.org/10.3390/diagnostics4020027
- Gupta Shruti, et al. Comparison of salivary and serum glucose levels in diabetic patients. Journal of diabetes science and technology. 2014;9(1):91-6. https://doi.org/10.1177/1932296814552673
- Hedayati Mohammad, et al. An optimised spectrophotometric assay for convenient and accurate quantitation of intracellular iron from iron oxide nanoparticles. International Journal of Hyperthermia. 2018;34(4):373-81. https://doi.org/10.1080/02656736.2017.1354403
- Hennessy Douglas J, et al. Ferene-a new spectrophotometric reagent for iron. Canadian journal of chemistry. 1984;62(4):721-4. https://doi.org/10.1139/v84-121
- Deda Daiana K, et al. A reliable protocol for colorimetric determination of iron oxide nanoparticle uptake by cells. Analytical and bioanalytical chemistry. 2017;409(28):6663-75. https://doi.org/10.1007/s00216-017-0622-1
- Walker HK, Hall WD, Hurst JW, Clinical methods: The history, physical, and laboratory examinations. 3rd edition. Boston: Butterworths; 1990.
- Liu Shanhu, et al. Structural effects of Fe3O4 nanocrystals on peroxidase-like activity. Chemistry-A European Journal. 2011;17(2): 620-5. https://doi.org/10.1002/chem.201001789
- Zhou Kebin, Li Yadong. Catalysis based on nanocrystals with well-defined facets. Angewandte Chemie International Edition. 2012;51(3):602-13. https://doi.org/10.1002/anie.201102619
- Bienert Gerd P, Jan K Schjoerring, Thomas P Jahn. Membrane transport of hydrogen peroxide. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2006;1758(8):994-1003. https://doi.org/10.1016/j.bbamem.2006.02.015
- Tang Jie, et al. Calcium phosphate embedded PLGA nanoparticles: A promising gene delivery vector with high gene loading and transfection efficiency. International journal of pharmaceutics. 2012;431(1-2): 210-21. https://doi.org/10.1016/j.ijpharm.2012.04.046
- Das Soumen, et al. Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine. 2013;8(9):1483-508. https://doi.org/10.2217/nnm.13.133
- Wu Yuao, et al. Novel iron oxide-cerium oxide core-shell nanoparticles as a potential theranostic material for ROS related inflammatory diseases. Journal of Materials Chemistry B. 2018;6(30):4937-51. https://doi.org/10.1039/C8TB00022K
- Mars P, Do W Van Krevelen. Oxidations carried out by means of vanadium oxide catalysts. Chemical Engineering Science. 1954;3:41-59. https://doi.org/10.1016/S0009-2509(54)80005-4
- Yu Kai, et al. Asymmetric Oxygen Vacancies: the Intrinsic Redox Active Sites in Metal Oxide Catalysts. Advanced Science. 2020;7(2):1901970. https://doi.org/10.1002/advs.201901970