DOI QR코드

DOI QR Code

Optical-Loss Measurement of a Silicon-Slab Waveguide

  • Received : 2020.07.20
  • Accepted : 2020.10.06
  • Published : 2020.12.25

Abstract

A mirror-in-slab waveguide is fabricated on a slab waveguide by using the refractive-index contrast between two materials, with the reflection performance depending on the slab waveguide's design. In this research, a slab waveguide design consisting of silicon (Si) as the core and SiO2 as the substrate was designed and developed to determine the coupling, waveguide, and mirror losses. Based on experimental results, coupling loss is dominant and is affected by the design of the slab waveguide. Furthermore, the mirror loss is affected by the design of the mirror, such as the curvature radius and the size of the mirror. TE and TM polarizations of light are used in the measurements. The experimental results show that mirror losses due to reflection by mirrors are 0.011 dB/mirror and 0.007 dB/mirror for TE and TM polarizations respectively. A simulation was performed to confirm whether the size of mirror is sufficient to reflect the input light, and to check the quality of the surfaces of fabricated mirrors.

Keywords

References

  1. R. N. Noyce, "Large scale integration: what is yet to come?," Science 195, 1102-1106 (1977). https://doi.org/10.1126/science.195.4283.1102
  2. R. Ulrich and R. J. Martin, "Geometrical optics in thin film light guides," Appl. Opt. 10, 2077-2085 (1971). https://doi.org/10.1364/AO.10.002077
  3. J. T. Boyd, R. W. Wu, D. E. Zelmon, A. Naumaan, H. A. Timlin, and H. E. Jackson, "Planar and channel optical waveguides utilizing silicon technology," Proc. SPIE 517, 100-105 (1985).
  4. X. Zheng and A. V. Krishnamoorthy, "Si photonics technology for future optical interconnection," in Proc. Asia Communications and Photonics Conference and Exhibition-ACP (Shanghai, China, Nov. 2011), pp. 1-11.
  5. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delage, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, "Subwavelength grating crossings for silicon wire waveguides," Opt. Express 18, 16146-16155 (2010). https://doi.org/10.1364/OE.18.016146
  6. A. M. Scheggi, R. Falciai, and M. Brenci, "Radiation characteristics of tapered slab waveguides," J. Opt. Soc. Am. 73, 119-121 (1983). https://doi.org/10.1364/JOSA.73.000119
  7. S. Dwari, A. Chakraborty, and S. Sanyal, "Analysis of linear tapered waveguide by two approaches," Prog. Electromagn. Res. 64, 219-238 (2006). https://doi.org/10.2528/PIER06071902
  8. P. Bienstman, S. Aseffa, S. G. Johnson, J. D. Joannopoulos, G. S. Petrich, and L. A. Kolodziejski, "Taper structures for coupling into photonic crystal slab waveguides," J. Opt. Soc. Am. B 20, 1817-1821 (2003). https://doi.org/10.1364/JOSAB.20.001817
  9. J. H. Karp, E. J. Tremblay, and J. E. Ford, "Planar micro-optic solar concentrator," Opt. Express 18, 1122-1133 (2010). https://doi.org/10.1364/OE.18.001122
  10. H. R. Stuart, "Waveguide lenses with multimode interference for low-loss slab propagation," Opt. Lett. 28, 2141-3143 (2003). https://doi.org/10.1364/OL.28.002141
  11. S. Misawa, M. Aoki, S. Fujita, A. Takaura, T. Kihara, K. Yokomori, and H. Funato, "Focusing waveguide mirror with a tapered edge," Appl. Opt. 33, 3365-3370 (1994). https://doi.org/10.1364/AO.33.003365
  12. R. Rogozinski, "Planar gradient tapered waveguide in glass," Opto-Electron. Rev. 9, 326-330 (2001).
  13. T. Saastamoinen, M. Kuittinen, P. Vahimaa, and J. Turunen, "Focusing of partially coherent light into planar waveguides," Opt. Express 12, 4511-4522 (2004). https://doi.org/10.1364/OPEX.12.004511
  14. S. Wiechmann, H. J. Heider, and J. Muller, "Analysis and design of integrated optical mirrors in planar waveguide technology," J. Lightwave Technol. 21, 1584 (2003). https://doi.org/10.1109/JLT.2003.812463
  15. M. Hammer, A. Hildebrandt, and J. Forstner, "Full resonant transmission of semiguided planar waves through slab waveguide step at oblique incidence," J. Lightwave Technol. 34, 997-1005 (2016). https://doi.org/10.1109/JLT.2015.2502431
  16. M. Hammer, A. Hildebrandt, and J. Forstner, "How planar optical waves can be made to climb dielectric steps," Opt. Lett. 40, 3711-3714 (2015). https://doi.org/10.1364/OL.40.003711
  17. C. Son, B. Kim, J. Shin, and N. Dagli, "Very compact metal slab waveguide reflectors as integrated high reflectivity mirrors on high index contrast waveguides," J. Lightwave Technol. 29, 2999-3003 (2011). https://doi.org/10.1109/JLT.2011.2163619
  18. S. T. Lau, T. Shiraishi, P. R. McIsaac, A. Behfar-Rad, and J. M. Ballantyne, "Reflection and transmission of a dielectric waveguide mirror," J. Lightwave Technol. 10, 634-643 (1992). https://doi.org/10.1109/50.136099
  19. K. Watanabe, J. Schrauwen, A. Leinse, D. V. Thourhout, R. Heideman, and R. Baets, "Total reflection mirror fabricated on silica waveguides with focused ion beam," Electron. Lett. 45, 883-884 (2009). https://doi.org/10.1049/el.2009.0473
  20. J.-H. Kim and R. T. Chen, "A collimation mirror in polymeric planar waveguide formed by reactive ion etching," IEEE Photonic Tech. Lett. 15, 422-424 (2003). https://doi.org/10.1109/LPT.2003.808757
  21. K. Tsukamoto, A. Sugama, Y. Wakino, T. Miyashita, and M. Kato, "Simple micro-lens with polymer-filled trench in slab waveguide," Fujitsu Sci. Tech. J. 38, 54-63 (2002).
  22. L. Faustini, C. Coriasso, A. Stano, C. Cacciatore, and D. Campi, "Loss analysis and interference effect in semiconductor integrated waveguide turning mirrors," IEEE Photonic Tech. Lett. 8, 1355-1357 (1996). https://doi.org/10.1109/68.536653
  23. F. J. Schmuckle and R. Pregla, "The method of lines for the analysis of lossy planar waveguides," IEEE Trans. Microw. Theory Tech. 38, 1473-1479 (1990). https://doi.org/10.1109/22.58688
  24. M. R. Ramadas, E. Garmire, A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, "Analysis of absorbing and leaky planar waveguides: a novel method," Opt. Lett. 14, 376-378 (1989). https://doi.org/10.1364/OL.14.000376
  25. M. Kawachi, "Silica waveguides on silicon and their application to integrated-optic components," Opt. Quant. Electron. 22, 391-416 (1990). https://doi.org/10.1007/BF02113964
  26. J. F. Bauterst, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, "Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding," Opt. Express 19, 24090-24101 (2011). https://doi.org/10.1364/OE.19.024090
  27. J. J. Ackert, K. J. Murray, P. E. Jessop, and A. P. Knights, "Photodetector for 1550 nm formed in silicon-on-insulator slab waveguide," Electron. Lett. 48, 1148-1150 (2012). https://doi.org/10.1049/el.2012.2484
  28. B. D. Jennings, D. McCloskey, J. J. Gough, T. Hoang, N. Abadia, C. Zhong, E. Karademir, A. L. Bradley, and J. F. Donegan, "Characterisation of multi-mode propagation in silicon nitride slab waveguide," J. Opt. 19, 015604 (2017). https://doi.org/10.1088/2040-8986/19/1/015604
  29. R. Ramponi, R. Osellame, and M. Marangoni, "Two straight-forward methods for the measurement of optical losses in planar waveguides," Rev. Sci. Instrum. 73, 1117-1120 (2002). https://doi.org/10.1063/1.1448143
  30. Y. Okamura, S. Yoshinaka, and S. Yamamoto, "Measuring mode propagation losses of integrated optical waveguides: a simple method," Appl. Opt. 22, 3892-3894 (1983). https://doi.org/10.1364/AO.22.003892
  31. T. Feuchter and C. Thirstrup, "High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity," IEEE Photonic Tech. Lett. 6, 1244-1247 (1994). https://doi.org/10.1109/68.329652
  32. A. Boudrioua and J. C. Loulergue, "New approach for loss measurements in optical planar waveguides," Opt. Commun. 137, 37-40 (1997). https://doi.org/10.1016/S0030-4018(96)00764-X
  33. Y. Morimoto and T. Ishigure, "Low-loss light coupling with graded-index core polymer optical waveguides via 45-degree mirrors," Opt. Express 24, 3550-3561 (2016). https://doi.org/10.1364/OE.24.003550
  34. Y. Morimoto, R. Kinoshita, A. Takahashi, and T. Ishigure, "45-degree mirrors on graded-index core polymer optical waveguides for low-loss light coupling," in Proc. IEEE Photonics Conference (San Diego, CA, USA, Oct. 2014), pp. 48-49.
  35. Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, "Integrated waveguide turning mirror in silicon-on-insulator," IEEE Photonic Tech. Lett. 14, 68-70 (2002). https://doi.org/10.1109/68.974164
  36. W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, "Miniature planar solid immersion with focused spot less than a quarter wavelength," Opt. Express 13, 7189-7197 (2005). https://doi.org/10.1364/OPEX.13.007189
  37. R. Orobtchouk, S. Laval, D. Pascal, and A. Koster, "Analysis of integrated optical waveguide mirrors," J. Lightwave Technol. 15, 815-820 (1997). https://doi.org/10.1109/50.580821
  38. J. Zhang, Y. Zhang, J. Xu, S. B. Lin, and C. X. Liu, "Planar and ridge waveguides formed by proton implantation and femtosecond laser ablation in fused silica," Vacuum 172, 109093 (2020). https://doi.org/10.1016/j.vacuum.2019.109093
  39. J. Zhang, W. T. Guo, C. Y. Tang, S. Yan, W. N. Li, and C. X. Liu "Planar and ridge waveguides in Yb3+-doped silicate glasses fabricated by proton implantation and precise diamond blade dicing," Opt. Commun. 453, 12434 (2019).