DOI QR코드

DOI QR Code

Noise Removal Method using Entropy in High-Density Noise Environments

고밀도 잡음 환경에서 엔트로피를 이용한 잡음 제거 방법

  • Baek, Ji-Hyeon (Dept. of Control and Instrumentation Eng., Pukyong National University) ;
  • Kim, Nam-Ho (Dept. of Control and Instrumentation Eng., Pukyong National University)
  • Received : 2020.07.07
  • Accepted : 2020.07.14
  • Published : 2020.10.31

Abstract

Currently, the spread of mobile devices is gradually increasing. Accordingly, various techniques using images or photos are actively being researched. However, image data generates noise for complex reasons, and the accuracy of image processing increases according to the performance of removing noise. Therefore, noise reduction is one of the essential steps. Salt and pepper noise is a typical impulse noise in the image, and various studies are being conducted to remove the noise. However, existing algorithms have poor noise rejection performance in high frequency areas, and average filters have blurring. Therefore, in this paper, we propose an algorithm that effectively removes salt and pepper noise in the high frequency region as well as the low frequency region using entropy. For objective and accurate judgment of proposed algorithms, MSE and PSNR were used to compare and analyze existing algorithms.

현재 모바일 기기의 보급이 점차 확대되어 지고 있다. 그에 따라 영상이나 사진을 활용한 다양한 기술들이 활발히 연구되어지고 있다. 하지만 영상 데이터는 복합적인 이유로 잡음이 발생하게 되며, 잡음의 제거 성능에 따라 영상처리의 정확도가 높아진다. 따라서 전 처리 과정으로 잡음의 제거는 필수불가결한 단계중 하나이다. 영상의 대표적인 임펄스 잡음으로 Salt and Pepper 잡음이 있으며, 이러한 잡음을 제거하기 위해 다양한 연구가 진행되고 있다. 하지만 기존의 알고리즘의 경우 고주파 영역에서 잡음제거 성능이 떨어지고, 평균 필터의 경우 블러 현상이 나타난다. 따라서 본 논문에서는 엔트로피를 이용하여 저주파영역 뿐만 아니라 고주파 영역에서도 효과적으로 Salt and Pepper 잡음을 제거하는 알고리즘을 제안한다. 제안한 알고리즘의 객관적이고 정확한 판단을 위해 MSE 및 PSNR을 이용하여 기존의 알고리즘들과 비교, 분석하였다.

Keywords

References

  1. X. Zhang and Y. Xiong, "Impulse Noise Removal Using Directional Difference Based Noise Detector and Adaptive Weighted Mean Filter," IEEE Signal Processing Letters, vol. 16, no. 4, pp. 295-298, Feb. 2009. https://doi.org/10.1109/LSP.2009.2014293
  2. B. W. Cheon and N. H. Kim, "Random Impulse Noise Removal Filter using Modified Median Filter," in Conference on Informational and Communication Engineering, Busan, Korea, 2019.
  3. O. Green, "Efficient Scalable Median Filtering Using Histogram-Based Operations," IEEE Transactions on Image Processing, vol. 27, no.5, pp. 2217-2228, Dec. 2017. https://doi.org/10.1109/TIP.2017.2781375
  4. S. W. Hong and N. H. Kim, "A Study on Median Filter using Directional Mask in Salt & Pepper Noise Environments," Journal of the Korea Institute of Information and Communication Engineering, vol. 19, no. 1, pp. 230-236, Jan. 2015. https://doi.org/10.6109/jkiice.2015.19.1.230
  5. P. E. Ng and K. K. Ma, "A Switching Median Filter With Boundary Discriminative Noise Detection for Extremely Corrupted Images," IEEE Transactions on Image Processing, vol. 15, no. 6, pp. 1506-1516, Jun. 2006. https://doi.org/10.1109/TIP.2005.871129
  6. S. I. Kwon and N. H. Kim, "Nonlinear Composite Filter for Gaussian and Impulse Noise Removal," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 3, pp. 629-635, Mar. 2017. https://doi.org/10.6109/jkiice.2017.21.3.629
  7. L. Dong, L. Yang and C. Liang, "Image Filter Method Based On Maximal Entropy Principle," in International Conference on Computer and Information Application, Tianjin, China, 2010.
  8. M. K. Quweider, "Color Image Segmentation with an Entropy-based Cost Function," in 2010 3rd International Congress on Image and Signal Processing, Yantai, Cina, 2010.
  9. C. I. Chang, Y. Du, J. Wang, S. M. Guo, and P. D. Thouin, "Survey and comparative analysis of entropy and relative entropy thresholding techniques," IEE Proceeding - Vision, Image and Signal Processing, vol. 153, no. 6, pp. 837-850, Dec. 2006. https://doi.org/10.1049/ip-vis:20050032
  10. M. Cholewa, "Shannon Information Entropy as Complexity Metric of Source Code," in International Conference on Mixed Design of Integrated Circuits and System, Bydgoszcz, Poland, 2017.