DOI QR코드

DOI QR Code

동적 시정수 기반 고성능 절연 저항 계산 기법

Dynamic Time Constant Based High-Performance Insulation Resistance Calculation Method

  • Son, Gi-Beom (Department of Electrical Engineering, Chungbuk National University,) ;
  • Hong, Jong-Phil (Department of Electrical Engineering, Chungbuk National University,)
  • 투고 : 2020.07.15
  • 심사 : 2020.07.22
  • 발행 : 2020.08.31

초록

본 논문에서는 IT 접지 시스템의 감전 및 화재사고 방지를 위한 새로운 절연 저항 계산 기법을 소개한다. 최근 신재생 에너지와 에너지 저장 장치의 확대 보급으로 태양광 발전 시장이 급속하게 성장하고 있으나 절연이 파괴되어 화재사고가 빈번히 발생함에 따라 IT 접지 방식에도 절연 저항 상태를 감시하는 장치가 필수적으로 요구되고 있다. 제안하는 절연 저항 계산 기법은 기존의 고정된 시정수곱 계수기반의 알고리즘에 비해 절연 임피던스의 조건에 따라 동적시정수곱계수를 적용함으로써 넓은 절연 저항 범위에서 빠른 응답 시간과 높은 정확도를 갖는다. 제안하는 동적 시정수 기반 절연 저항 계산 기법은 기존의 방법에 비해 최대 응답 시간은 39.29초, 오차율은 20.11%를 개선시키는 효과를 보였다.

This paper presents a new insulation resistance calculation technique to prevent electric shock and fire accidents due to the dielectric breakdown in the primary insulation section of the IT ground system. The solar power generation market is growing rapidly due to the recent expansion of renewable energy and energy storage systems, but as the insulation is destroyed and fire accidents frequently occur, a device for monitoring the insulation resistance state is indispensable to the IT grounding method. Compared to the conventional algorithm that use a method of multiplying a time constant to a fixed coefficient, the proposed insulation resistance calculation method has a fast response time and high accuracy over a wide insulation resistance range by applying a different coefficient according to the values of the insulation impedance. The proposed dynamic time constant based insulation resistance calculation technique reduces the response time by up to 39.29 seconds and improves the error rate by 20.11%, compared to the conventional method.

키워드

참고문헌

  1. K. Engelen, E. L. Shun, P. Vermeyen, I. Pardon, R. D'hulst, J. Driesen, and R. Belmans, "The feasibility of small-scale residential DC distribution systems," IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on, pp. 2618-2623, Nov. 2006.
  2. IEC International Standard, IEC 60364-4-41, Ed.5, Low-voltage electrical Installations - Part 4-41: Protection for safety-Protection against electric shock, TC64/1489/ FDIS, 2005.
  3. H. I. Han, J. G Yang, and Y. H Kang, "Study on the Regulation of Earth Resistnace for Communications Facilities," Journal of the Korea Institute of Information and Communication Engineering, vol. 10, no. 4, pp. 724-730, Apr. 2006.
  4. D. Salomonsson, and A. Sannino, "Low-voltage DC distribution system for commercial power systems with sensitive electronic loads," Power Delivery, IEEE Transactions, vol. 22. pp. 1620-1627, Jul. 2010. https://doi.org/10.1109/TPWRD.2006.883024
  5. K. Hirose, T. Tanaka, T. Babasaki, S. Person, O. Foucault, B. J. Sonnenberg, and M. Szpek, "Grounding concept considerations and recommendations for 400V DC distribution system," Telecommunications Energy Conference (INTELEC), 2011 IEEE 33rd International. pp. 1-8, Oct. 2011.
  6. J. H. Jeon, "Automatic abstraction and fault tolerance in cortical microachitectures," in Proceeding of the Korean Institute of Illuminating and Electrical Installation Engineers 30(1), pp. 48-52, 2016.
  7. Korean Agency for Technology and Standards, "Technical Regulations for Electrical and Telecommunication Products and Components," KC 60364-4-41, 2015.
  8. A. Verma, M. M. Tripathi, K. G. Upadhyay, H.-J. Kim, A Review Article on Green Energy Forecasting, Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol.6, no.11, pp. 637-647, Nov. 2016. https://doi.org/10.14257/AJMAHS.2016.11.58
  9. S. H. Jang, P. J. Kim, and J. P. Hong, IMD(Insulation Monitoring Device) provides adaptive tuning based on time constant prediction and method for controlling thereof, KR Patent 10-2019-0178611, to LS Electric, 2019.
  10. Korean Agency for Technology and Standards, "Technical Regulations for Electrical and Telecommunication Products and Components," KC 60364-4-41, 2015.