DOI QR코드

DOI QR Code

Transmit Power and Access Point Selection Algorithm: TA Link and AT Link

전송전력과 엑세스 포인트 선정 알고리즘: AT 링크와 TA 링크

  • Oh, Changyoon (Department of Information and Communication Engineering Computer Engineering, Inha Technical College)
  • Received : 2020.04.08
  • Accepted : 2020.07.01
  • Published : 2020.08.31

Abstract

We investigate the joint selection problem of the transmit power level and the best access point for multi-access points. We further reduce the transmit power by jointly optimizing the transmit power and the access point selection. Our aim is to minimize the total transmit power, while each terminal maintains minimum signal to interference ratio requirement. We observe that the optimum solution can be achieved through proposed iterative algorithm for both TA link and AT link. Simulation results show that proposed algorithm (joint optimization of transmit power level and access point) outperforms the algorithm which optimizes the transmit power only. We also observe that the duality between the TA link and AT link does not hold in multi-access points environment. Accordingly, the resulting power vectors and the access point vectors for TA link and AT link are different in general.

다중 엑세스 포인트 환경에서 전송전력과 최적의 엑세스 포인트를 선택하는 문제를 연구한다. 본 연구는 지난 연구결과를 확장하여 TA 링크와 AT 링크에서 전송전력과 엑세스 포인트를 함께 최적화한다. 목적은 모든 단말이 요구하는 최소의 신호대 간섭비를 유지하면서, 총 전송전력을 최소화하는 것이다. TA 링크와 AT 링크 모두에서 제안하는 반복적 기법을 통해서 최적화된 결과값에 수렴함을 증명한다. 실험결과를 통해 1) 전송전력과 엑세스 포인트를 동시에 최적화하는 방법이 전송전력만을 최적화하는 방법보다 전송전력 소모에 이득이 있음을 확인하였다. 또한, 2) 다중 엑세스 포인트 환경에서는 TA 링크와 AT 링크에서의 알고리즘의 결과값인 전송전력 벡터와 엑세스 포인트 벡터는 쌍대성이 성립하지 않음을 확인하였다.

Keywords

References

  1. R. Hermeto, A. Gallais, and F. Theoleyre, "Scheduling for IEEE802.15.4-TSCH and slow channel hopping MAC in low power industrial wireless networks: A survey," Comput. Commun., vol. 114, pp. 84-105, Dec. 2017. https://doi.org/10.1016/j.comcom.2017.10.004
  2. K. Kralevska, D. J. Vergados, Y. Jiang, and A. Michalas, "Load Balancing Algorithm for Resource Allocation in IEEE 802.15.4e Networks," 2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops, pp. 675-680, Sep. 2018.
  3. R. H. Hwang, C. C. Wang, and W. B. Wang, "A Distributed Scheduling Algorithm for IEEE 802.15.4e Wireless Sensor Networks," Computer Standards & Interfaces, vol. 52, pp. 63-70, May 2017. https://doi.org/10.1016/j.csi.2017.01.003
  4. G. Lu, N. Sadagopan, B. Krishnamachari, and A. Goel, "Delay efficient sleep scheduling in wireless sensor networks," In Proceedings of IEEE INFO COM, vol. 4, no. C, pp. 2470-2481, 2005.
  5. Q. Hua, and F. Lau, "Joint Link Scheduling and Topology Control for Wireless Sensor Networks with SINR Constraints," In Handbook of Research on Developments and Trends in Wireless Sensor Networks: From Principle to Practice, IGI Global, pp. 184-208, 2010.
  6. M. Barcelo, A. Correa, J. L. Vicario, and A. Morell, "Joint routing, channel allocation and power control for real‐life wireless sensor networks," IEEE Transactions on Emerging Telecommunications Technologies, vol. 26, no. 5, pp. 945-956, May 2015. https://doi.org/10.1002/ett.2783
  7. C. Oh, "Transmit Power Control for Multi Access Points Environment," Journal of the Korea Industrial Information Systems Research, vol. 25, no. 2, pp. 49-56, Apr. 2020. https://doi.org/10.9723/JKSIIS.2020.25.2.049
  8. R. Yates, "A framework for uplink power control in cellular radio systems," IEEE Journal on Selected Areas in Communications, vol. 13, no. 7, pp. 1341-1347, Sep. 1995. https://doi.org/10.1109/49.414651