DOI QR코드

DOI QR Code

Weighted Least Squares Based on Feature Transformation using Distance Computation for Binary Classification

이진 분류를 위하여 거리계산을 이용한 특징 변환 기반의 가중된 최소 자승법

  • Jang, Se-In (Department of Statistics and Applied Probability, National University of Singapore) ;
  • Park, Choong-Shik (Department of Smart IT, U1 University)
  • Received : 2019.11.25
  • Accepted : 2019.12.12
  • Published : 2020.02.29

Abstract

Binary classification has been broadly investigated in machine learning. In addition, binary classification can be easily extended to multi class problems. To successfully utilize machine learning methods for classification tasks, preprocessing and feature extraction steps are essential. These are important steps to improve their classification performances. In this paper, we propose a new learning method based on weighted least squares. In the weighted least squares, designing weights has a significant role. Due to this necessity, we also propose a new technique to obtain weights that can achieve feature transformation. Based on this weighting technique, we also propose a method to combine the learning and feature extraction processes together to perform both processes simultaneously in one step. The proposed method shows the promising performance on five UCI machine learning data sets.

이진 분류(binary classification)는 머신러닝(machine learning) 분야에서 많이 다루어진 주제이다. 게다가 이진 분류는 다중 분류로 쉽게 발전될 수 있는 중요한 분야이다. 머신러닝 방법들을 적용할 때에 전처리(preprocessing)이나 특징 추출(feature extraction)과 같은 작업이 필수적이다. 이는 분류기 성능을 향상시키기 위한 중요한 작업이다. 본 논문에서는 가중된 최소 자승법을 기반으로 새로운 머신러닝 방법을 제안한다. 또한, 특징 변환시킬 수 있는 새로운 가중치 계산 방법을 제안한다. 이를 통해 특징 변환과 동시에 학습을 진행할 수 있는 방법을 제안한다. 본 제안을 다섯 개의 머신러닝 데이터베이스에서 실험을 진행하였으며 이 데이터베이스에서 우수한 성능을 얻을 수 있었다.

Keywords

References

  1. G.-Y. Lim, and Y.-B. Cho, "The Sentence Similarity Measure Using Deep-Learning and Char2Vec," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 10, pp. 1300-1306, Oct. 2018. https://doi.org/10.6109/JKIICE.2018.22.10.1300
  2. S. I. Hassan, D. L. Minh, S. Im, K. Min, Ju. Nam, and H. Moon, "Damage Detection and Classification System for Sewer Inspection using Convolutional Neural Networks based on Deep Learning," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 3, pp. 451-457, Mar. 2018. https://doi.org/10.6109/jkiice.2018.22.3.451
  3. W. Lee, S. H. Kim, J. Ryu, and T.-W. Ban, "Fast Detection of Disease in Livestock based on Deep Learning," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 5, pp. 1009-1015, May. 2017. https://doi.org/10.6109/jkiice.2017.21.5.1009
  4. C.-W. Son, and S.-B. Lee, "Realization of home appliance classification system using deep learning," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 9, pp. 1718-1724, Sep. 2017. https://doi.org/10.6109/jkiice.2017.21.9.1718
  5. W. Lee, T.-W. Ban, S. H. Kim, and J. Ryu, "Neighbor Discovery for Mobile Systems based on Deep Learning," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 3, pp. 527-533, Mar. 2018. https://doi.org/10.6109/JKIICE.2018.22.3.527
  6. V. Srinidhi, "Classification of User Behaviour in Mobile Internet," Asia-pacific Journal of Convergent Research Interchange, HSST, ISSN : 2508-9080, vol. 2, no. 2, pp. 9-18, Jun. 2016. https://doi.org/10.21742/apjcri.2016.06.02
  7. A. M. Legendre, Nouvelles methodes pour la determination des orbites des cometes. F. Didot, 1805.
  8. A. C. Aitken, "IV. On least squares and linear combination of observations," Proceedings of the Royal Society of Edinburgh, vol. 55, pp.42-48, 1936.
  9. M. Lichman. UCI machine learning repository, 2013. [Internet]. Available: http://archive.ics.uci.edu/ml.