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A NOTE ON INEXTENSIBLE FLOWS OF CURVES

WITH FERMI-WALKER DERIVATIVE IN GALILEAN

SPACE G3

Hülya Gün Bozok∗ and İpek Nİzamettİn Sertkol

Abstract. In this paper, Fermi-Walker derivative for inextensible
flows of curves are researched in 3-dimensional Galilean space G3.
Firstly using Frenet and Darboux frame with the help of Fermi-
Walker derivative a new approach for these flows are expressed,
then some results are obtained for these flows to be Fermi-Walker
transported in G3.

1. Introduction

The flow of a curve is called inextensible if its arc length is preserved.
Physically, the inextensible curve flows give rise to motions in which no
strain energy is induced. The flows of inextensible curve and surface
are used to solve many problems in computer vision [8, 14], computer
animation [3] and even structural mechanics [20]. The methods used in
the present study are developed by Gage and Hamilton [5] and Grayson
[6]. A general formulation for inextensible flows of curves and devel-
opable surfaces in R3 is revealed by Kwon in [12]. After that many
studies have been done on this subject, such that inextensible flows of
curves are investigated in Minkowskian 3-space by [13]. On the other
hand inextensible flows of curves in the 3-dimensional Galilean space G3

and in the 4-dimensional Galilean space G4 are studied in [15] and [16],
respectively.
There are different transport laws for a tensor along a curve. One of
them is Fermi-Walker’s law. The Fermi-Walker transport of the tensor
along a curve is determined as the law that makes the Fermi-Walker
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derivative along the curve be zero [2]. Construction of Fermi-Walker
transported frames is expressed in [4, 10]. According to this frame a
new characterization for inextensible flows are given by [1, 11].
In the present study, inextensible flows of curves according to Fermi-
Walker derivative are examined in the 3-dimensional Galilean Space G3.
Besides, new characterization in terms of inextensible flows of curves ac-
cording to this frame are revealed in G3. Correspondingly, some results
are obtained for these flows of curves to be Fermi-Walker transported in
G3.

2. Preliminaries

The Galilean space is a Cayley-Klein space equipped with the projec-
tive metric of signature (0,0,+,+). In [17] for the vectors v1 = (x1, y1, z1)
and v2 = (x2, y2, z2) the Galilean scalar product is defined by

(1) 〈v1, v2〉 =

{
x1x2 , if x1 6= 0 ∨ x2 6= 0
y1y2 + z1z2 , if x1 = 0 ∧ x2 = 0

and for the vector v = (x, y, z) the Galilean norm is determined by

(2) ‖v‖ =

{
|x| , if x 6= 0√
y2 + z2 , if x = 0

.

A vector v = (v1, v2, v3) is called non-isotropic vector if the first com-
ponent of a vector is not zero, that is v1 6= 0 otherwise i.e., v1 = 0 it is
called isotropic vector. If a curve C of the class Cr(r ≥ 3) is given by
the parametrization

(3) r = r (x, y (x) , z (x))

where x is a Galilean invariant the arc length on C. Then, the curvature
and torsion of this curve are given by

(4) κ (x) =
√
y′′2 + z′′2 and τ (x) =

1

κ2 (x)
det
(
r′ (x) , r′′ (x) , r′′′ (x)

)
.

In Galilean 3-space the orthonormal trihedron is expressed by

T (x) =
(
1, y′ (x) , z′ (x)

)
N (x) =

1

κ (x)

(
0, y′′ (x) , z′′ (x)

)
(5)

B (x) =
1

κ (x)

(
0,−z′′ (x) , y′′ (x)

)
.
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Also, in this space the following Frenet formulas hold:

T ′ (x) = κ (x)N (x)

N ′ (x) = τ (x)B (x)(6)

B′ (x) = −τ (x)N (x)

where T,N,B are called the vectors of tangent, principal normal and
binormal, respectively [9]. For a Darboux frame in G3, the following
definition can be given,

Definition 2.1. Let S be a surface in G3 and α be a curve on S.
If T denotes the unit tangent vector to α, n denotes the unit normal
vector of S at the point α(x) of α, and Q = n×T denotes the tangential
normal. Then {T,Q} is the basis for the vectors tangent to S at α(x)
and {T,Q, n} is the orthonormal basis for all vectors at α(x) in G3.
Thus there is a new frame at every point of a curve on a surface S in G3

is constructed other than the Frenet-Serret frame. This frame is called
Galilean Darboux frame or tangent-normal frame [18].

Theorem 2.2. Let α : I ⊂ R −→M ⊂ G3 be a unit speed curve and
let {T,Q, n} be the Darboux frame field of α with respect to M ,then T

Q
n

′ =
 0 κg κn

0 0 τg
0 −τg 0

 T
Q
n

 .(7)

where κg, κn and τg are geodesic curvature, normal curvature and geo-
desic torsion, respectively [18].

Definition 2.3. Suppose that X be any vector field and α is any
unit speed curve in G3, then

(8) ∇̃TX = ∇TX − 〈T,X〉A+ 〈A,X〉T

defined as Fermi-Walker derivative of the vector field X in G3. Where
T is the unit tangent vector of α and A = ∇TT [19].

Definition 2.4. Suppose that X be any vector field and α is any
unit speed curve in G3, if the Fermi-Walker derivative of the vector field

X in G3 is vanishes, i.e., ∇̃TX = 0, then X is called Fermi-Walker
transported vector field along the curve [19].

In [19] using definition 2.3 and considering the equation (1) the fol-
lowing lemmas are given.
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Lemma 2.5. Let α : I ⊂ R −→ G3 be a curve in Galilean 3-space,
X is any vector field along the curve α(x), then Fermi-Walker derivative
with respect to the Frenet frame can be expressed as

• If X is an isotropic vector field along the curve α(x), then Fermi-
Walker derivative of X is determined by

(9) ∇̃TX = ∇TX + κ 〈N,X〉T,

• If X is a non-isotropic vector field along the curve α(x), then
Fermi-Walker derivative of X is determined by

(10) ∇̃TX = ∇TX − κ 〈T,X〉N.

Lemma 2.6. Let α : I ⊂ R −→ G3 be a curve in Galilean 3-space,
X is any vector field along the curve α(x), then Fermi-Walker derivative
in view of Darboux frame is determined as

• If X is an isotropic vector field along the curve α(x), then Fermi-
Walker derivative of X is defined by

(11) ∇̃TX = ∇TX + (κg 〈Q,X〉+ κn 〈n,X〉)T,

• If X is a non-isotropic vector field along the curve α(x), then
Fermi-Walker derivative of X is defined by

(12) ∇̃TX = ∇TX − (κgQ+ κnn) 〈T,X〉 .

3. Fermi-Walker Derivative for Inextensible Flows of Curves
in Galilean Space G3

Let γ : I ⊂ R −→ G3 be a curve in G3 and V be a vector field
along the curve γ. In this study, the same method in [11, 1] is used
to construct the Fermi-Walker derivative for inextensible flows of curves
according to Frenet and Darboux frame, respectively, in G3.

Throughout this paper, we assume that γ (u, t) is a one parameter
family of smooth curves in 3-dimensional Galilean space G3. The arc
length of γ is given by

s (u) =

∫ u

0

∣∣∣∣∂γ∂u
∣∣∣∣ du ,

where ∣∣∣∣∂γ∂u
∣∣∣∣ =

∣∣∣∣〈∂γ∂u, ∂γ∂u
〉∣∣∣∣ 12 .
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The operator
∂

∂s
is given in terms of u by

∂

∂s
=

1

v

∂

∂u
,

where v =

∣∣∣∣∂γ∂u
∣∣∣∣ and the arc length parameter is ds = vdu.

Definition 3.1. If γ is a one parameter family of smooth curves in
Galilean space G3, then any flow of γ can be represented as

(13)
∂γ

∂t
= fT + gN + hB

where {T,N,B} is Frenet frame in G3.

Moreover, for inextensible flows of curves in the 3-dimensional
Galilean space, the following theorem is hold [15].

Theorem 3.2. Let
∂γ

∂t
= fT + gN + hB be a smooth flow of the

curve γ in G3. Then the flow is inextensible if and only if f is constant,
that is,

(14)
∂f

∂s
= 0.

Furthermore, for inextensible flows of curves in the 3-dimensional
Galilean space, the following equations are hold.

Theorem 3.3. Let
∂γ

∂t
= fT + gN + hB be a smooth flow of the

curve γ in G3. Then,

∂T

∂t
=

(
∂g

∂s
+ fκ− hτ

)
N +

(
∂h

∂s
+ gτ

)
B

∂N

∂t
=

(
−∂g
∂s
− fκ+ hτ

)
T(15)

∂B

∂t
=

(
−∂h
∂s
− gτ

)
T

Proof. If γ be a curve flow then it can be written that

∂T

∂t
=

∂

∂t

∂γ

∂s
=

∂

∂s
(fT + gN + hB)

Thus, it is seen that

(16)
∂T

∂t
=

∂f

∂s
T +

(
∂g

∂s
+ fκ− hτ

)
N +

(
∂h

∂s
+ gτ

)
B
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On the other hand substituting theorem 3.2 in (16), it is obtained that

∂T

∂t
=

(
∂g

∂s
+ fκ− hτ

)
N +

(
∂h

∂s
+ gτ

)
B.

The differentiation of the Frenet frame with respect to t is as follows:

0 =
∂

∂t
〈T,N〉 =

(
∂g

∂s
+ fκ− hτ

)
+

〈
T,
∂N

∂t

〉
,

0 =
∂

∂t
〈T,B〉 =

(
∂h

∂s
+ gτ

)
+

〈
T,
∂B

∂t

〉
,

0 =
∂

∂t
〈B,N〉 =

〈
∂B

∂t
,N

〉
+

〈
B,

∂N

∂t

〉
Using the above equation, Galilean inner product and the following
statement 〈

∂B

∂t
,B

〉
=

〈
∂N

∂t
,N

〉
= 0,

it is concluded that

∂N

∂t
=

(
−∂g
∂s
− fκ+ hτ

)
T

∂B

∂t
=

(
−∂h
∂s
− gτ

)
T

For the Fermi-Walker derivative of inextensible flows in G3, the following
theorem can be obtained.

Theorem 3.4. The Fermi-Walker derivatives of the
∂T

∂t
,
∂N

∂t
and

∂N

∂t
vector fields as follows

∇̃T
∂T

∂t
= κ

(
∂g

∂s
+ fκ− hτ

)
T

+

[
∂

∂s

(
∂g

∂s
+ fκ− hτ

)
− τ

(
∂h

∂s
+ gτ

)]
N(17)

+

[
∂

∂s

(
∂h

∂s
+ gτ

)
+ τ

(
∂g

∂s
+ fκ− hτ

)]
B

∇̃T
∂N

∂t
=

[
∂

∂s

(
−∂g
∂s
− fκ+ hτ

)]
T(18)

∇̃T
∂B

∂t
=

[
∂

∂s

(
−∂h
∂s
− gτ

)]
T(19)
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Proof. According to the theorem 3.3. it is seen that
∂T

∂t
is isotropic.

So using the equation (9), the following equation can be written

∇̃T
∂T

∂t
= ∇T

∂T

∂t
+ κ

〈
N,

∂T

∂t

〉
T

=
∂

∂s

[(
∂g

∂s
+ fκ− hτ

)
N +

(
∂h

∂s
+ gτ

)
B

]
+ κ

〈
N,

∂T

∂t

〉
T.

In terms of the theorem 3.3. it is said that
∂N

∂t
and

∂B

∂t
is non-isotropic,

then

∇̃T
∂N

∂t
= ∇T

∂N

∂t
− κ

〈
T,
∂N

∂t

〉
N

=
∂

∂s

[(
−∂g
∂s
− fκ+ hτ

)
T

]
− κ

〈
T,
∂N

∂t

〉
N

=

[
∂

∂s

(
−∂g
∂s
− fκ+ hτ

)]
T ,

∇̃T
∂B

∂t
= ∇T

∂B

∂t
− κ

〈
T,
∂B

∂t

〉
N

=
∂

∂s

[(
−∂h
∂s
− gτ

)
T

]
− κ

〈
T,
∂B

∂t

〉
N

=

[
∂

∂s

(
−∂h
∂s
− gτ

)]
T .

equations are hold. After the necessary calculations the proof is com-
pleted.

Besides, for inextensible flows of curves in the 3-dimensional Galilean
space according to Darboux frame the following equations are hold [7].

Theorem 3.5. Let
∂γ

∂t
= f1T + f2Q + f3n be a smooth flow of the

curve γ in G3. Then the flow is inextensible if and only if

(20)
∂f1
∂s

= 0.

Moreover, for inextensible flows of curves in the 3-dimensional
Galilean space according to Darboux frame the following equations are
hold.
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Theorem 3.6. Let
∂γ

∂t
= f1T + f2Q + f3n be a smooth flow of the

curve γ in G3. Then,

∂T

∂t
=

(
∂f2
∂s

+ f1κg − f3τg
)
Q+

(
∂f3
∂s

+ f1κn + f2τg

)
n

∂Q

∂t
=

(
−∂f2
∂s
− f1κg + f3τg

)
T(21)

∂n

∂t
=

(
−∂f3
∂s
− f1κn − f2τg

)
T

where {T,Q, n} is Darboux frame in G3.

Proof. For any arbitrary flow γ it is known that

∂T

∂t
=

∂

∂t

∂γ

∂s
=

∂

∂s
(f1T + f2Q+ f3n)

So, the following equation is hold,

(22)
∂T

∂t
=

∂f1
∂s

T +

(
∂f2
∂s

+ f1κg − f3τg
)
Q+

(
∂f3
∂s

+ f1κn + f2τg

)
n

On the other hand substituting theorem 3.5 in (22), it is obtained that

∂T

∂t
=

(
∂f2
∂s

+ f1κg − f3τg
)
Q+

(
∂f3
∂s

+ f1κn + f2τg

)
n.

The differentiation of the Darboux frame with respect to t is as follows:

0 =
∂

∂t
〈T,Q〉 =

(
∂f2
∂s

+ f1κg − f3τg
)

+

〈
T,
∂Q

∂t

〉
,

0 =
∂

∂t
〈T, n〉 =

(
∂f3
∂s

+ f1κn + f2τg

)
+

〈
T,
∂n

∂t

〉
,

0 =
∂

∂t
〈Q,n〉 =

〈
∂Q

∂t
, n

〉
+

〈
Q,

∂n

∂t

〉
Using the above equation and the following statement〈

∂Q

∂t
,Q

〉
=

〈
∂n

∂t
, n

〉
= 0,

it is concluded that

∂Q

∂t
=

(
−∂f2
∂s
− f1κg + f3τg

)
T ,

∂n

∂t
=

(
−∂f3
∂s
− f1κn − f2τg

)
T.
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In view of the theorem 3.6., for the Fermi-Walker derivative for inexten-
sible flows in G3 the following theorem can be obtained.

Theorem 3.7. The Fermi-Walker derivatives of the
∂T

∂t
,
∂Q

∂t
and

∂n

∂t
are as follows,

∇̃T
∂T

∂t
=

[
κg

(
∂f2
∂s

+ f1κg − f3τg
)

+ κn

(
∂f3
∂s

+ f1κn + f2τg

)]
T

+

[
∂

∂s

(
∂f2
∂s

+ f1κg − f3τg
)
− τg

(
∂f3
∂s

+ f1κn + f2τg

)]
Q(23)

+

[
∂

∂s

(
∂f3
∂s

+ f1κn + f2τg

)
+ τg

(
∂f2
∂s

+ f1κg − f3τg
)]

n

∇̃T
∂Q

∂t
=

[
∂

∂s

(
−∂f2
∂s
− f1κg + f3τg

)]
T

(24)

∇̃T
∂n

∂t
=

[
∂

∂s

(
−∂f3
∂s
− f1κn − f2τg

)]
T

(25)

Proof. By using the theorem 3.6 and considering the equation (11),

∇̃T
∂T

∂t
= ∇T

∂T

∂t

+

[
κg

〈
Q,

∂T

∂t

〉
+ κn

〈
n,
∂T

∂t

〉]
T

=
∂

∂s

[(
∂f2
∂s

+ f1κg − f3τg
)
Q+ τg

(
∂f3
∂s

+ f1κn + f2τg

)
n

]
+

[
κg

〈
Q,

∂T

∂t

〉
+ κn

〈
n,
∂T

∂t

〉]
T
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is obtained. After that using the equation (12) the following equations
are hold:

∇̃T
∂Q

∂t
= ∇T

∂Q

∂t
− (κgQ+ κnn)

〈
T,
∂Q

∂t

〉
=

∂

∂s

[(
−∂f2
∂s
− f1κg + f3τg

)
T

]
+ κg

(
−∂f2
∂s
− f1κg + f3τg

)
Q+ κn

(
−∂f2
∂s
− f1κg + f3τg

)
− (κgQ+ κnn)

(
−∂f2
∂s
− f1κg + f3τg

)
,

∇̃T
∂n

∂t
= ∇T

∂n

∂t
− (κgQ+ κnn)

〈
T,
∂n

∂t

〉
=

∂

∂s

[(
−∂f3
∂s
− f1κn − f2τg

)
T

]
+ κg

(
−∂f3
∂s
− f1κn − f2τg

)
Q+ κn

(
−∂f3
∂s
− f1κn − f2τg

)
− (κgQ+ κnn)

(
−∂f3
∂s
− f1κn − f2τg

)
,

So, the proof is completed.

Corollary 3.8. In view of Theorem 3.4 it is seen that, if
∂T

∂t
,
∂N

∂t
,
∂B

∂t
along the curve is parallel to the Fermi-Walker terms (Fermi-Walker
transported), then the following equalities are hold,(

∂g

∂s
+ fκ− hτ

)
= 0(

∂h

∂s
+ gτ

)
= 0

Corollary 3.9. In view of Theorem 3.7 it is seen that, if
∂T

∂t
,
∂Q

∂t
,
∂n

∂t
along the curve is parallel to the Fermi-Walker terms (Fermi-Walker
transported), then the following equalities are hold,
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(
∂f2
∂s

+ f1κg − f3τg
)

= 0(
∂f3
∂s

+ f1κn + f2τg

)
= 0
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[18] T. Şahin, Intrinsic equations for a generalized relaxed elastic line on an oriented
surface in the Galilean space, Acta Mathematica Scientia, 33B(3), (2013), 701-
711.
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