ON APPROXIMATE MIXED n-JORDAN HOMOMORPHISMS ON BANACH ALGEBRAS

Abbas Zivari-Kazempour* and Mohammad Valaei

Abstract

In this paper, the Hyers-Ulam-Rassias stability of mixed n-Jordan homomorphisms on Banach algebras and the superstability of mixed n-Jordan $*$-homomorphism between C^{*}-algebras are investigated.

1. Introduction

Let X be real normed space and Y be real Banach space. S. M. Ulam [20] posed the problem: When does a linear mapping near an approximately additive mapping $f: X \longrightarrow Y$ exist?

In 1941, Hyers [12] gave an affirmative answer to the question of Ulam for additive Cauchy equation in Banach space.

Let X and Y be two Banach spaces and let $f: X \longrightarrow Y$ be a mapping satisfying:

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon
$$

for all $x, y \in X$ and $\varepsilon>0$. Then there is a unique additive mapping $F: X \longrightarrow Y$ which satisfies

$$
\|F(x)-f(x)\| \leq \varepsilon, \quad x \in X
$$

Th. M. Rassias [18] considered a generalized version of the Hyers's result which permitted the Cauchy difference to become unbounded. That is, he proved:

[^0]Theorem 1.1. Let X and Y be two real Banach spaces, $\varepsilon \geq 0$ and $0 \leq p<1$. If a mapping $f: X \longrightarrow Y$ satisfies

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$, then there is a unique additive mapping $F: X \longrightarrow Y$ such that

$$
\|F(x)-f(x)\| \leq \frac{2 \varepsilon}{\left|2-2^{p}\right|}\|x\|^{p}, \quad x \in X
$$

If, in addition, for each fixed $x \in X$ the function $t \longmapsto f(t x)$ is continuous in $t \in \mathbb{R}$, then F is linear.

This result is called the Hyers-Ulam-Rassias stability of the additive Cauchy equation. In [10], Gajda proved that Theorem 1.1 is valid for $p>1$, which was raised by Rassias [19]. He also gave an example showing that a similar result to the above does not hold for $p=1$. If $p<0$, then $\|x\|^{p}$ is meaningless for $x=0$; in this case, if we assume that $\|0\|^{p}=\infty$, then the proof given in [18] also works for $x \neq 0$. Thus, the Hyers-Ulam-Rassias stability of the additive Cauchy equation holds for $p \in \mathbb{R} \backslash\{1\}$.

An additive mapping $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ between Banach algebras is called n-Jordan homomorphism if $\varphi\left(a^{n}\right)=\varphi(a)^{n}$, for all $a \in \mathcal{A}$.

If $n=2$, then φ is called simply a Jordan homomorphism. The concept of n-Jordan homomorphism was dealt with firstly by Herstein in [11]. See also [4], [21] and [22], for characterization of Jordan and 3-Jordan homomorphism.

Badora [2] proved the Hyers-Ulam-Rassias stability of ring homomorphisms, which generalizes the result of Bourgin [5]. The Hyers-UlamRassias stability of Jordan homomorphisms investigated by Miura et al. [14], and it is extended to n-Jordan homomorphisms in [9] and [13].

Let \mathcal{A} and \mathcal{B} be complex algebras and $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ be a linear map. Then φ is called an mixed n-Jordan homomorphism if for all $a, b \in \mathcal{A}$,

$$
\varphi\left(a^{n} b\right)=\varphi(a)^{n} \varphi(b)
$$

A mixed 2-Jordan homomorphism is said to be mixed Jordan homomorphism. The notation of mixed n-Jordan homomorphisms is introduced by Neghabi, Bodaghi and Zivar-Kazempour in [15] for the first time. The following example which is obtained in [15], proves that the mixed n-Jordan homomorphisms are different from the n-Jordan homomorphisms.

Example 1.2. Let

$$
\mathcal{A}=\left\{\left[\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right]: \quad a, b, c \in \mathbb{R}\right\},
$$

and define $\varphi: \mathcal{A} \longrightarrow \mathcal{A}$ via

$$
\varphi\left(\left[\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right]\right)=\left[\begin{array}{ccc}
0 & a & 0 \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right] .
$$

Then, $\varphi\left(X^{2}\right) \neq \varphi(X)^{2}$, for all $X \in \mathcal{A}$. Hence, φ is not Jordan homomorphism, and so it is not homomorphism. But for all $n \geq 3$ and for all $X, Y \in \mathcal{A}$, we have $\varphi\left(X^{n} Y\right)=\varphi(X)^{n} \varphi(Y)$. Therefore, φ is mixed n-Jordan homomorphism for all $n \geq 3$.

Let \mathcal{A} and \mathcal{B} be complex algebras, and let \mathcal{B} be a right [left] \mathcal{A} module. Then a linear map $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ is saied to be pseudo n-Jordan homomorphism if there exiest an element $w \in \mathcal{A}$ such that for all $a \in \mathcal{A}$,

$$
\varphi\left(a^{n} w\right)=\varphi(a)^{n} \cdot w, \quad\left[\varphi\left(w a^{n}\right)=w \cdot \varphi(a)^{n}\right] .
$$

The concept of pseudo n-Jordan homomorphism was introduced and studied by Ebadian et al., in [6].

Let $\varphi: \mathcal{A} \longrightarrow \mathcal{A}$ be a mixed n-Jordan homomorphism with a fixed point u. Then for all $a \in \mathcal{A}$,

$$
\varphi\left(a^{n} u\right)=\varphi(a)^{n} \varphi(u)=\varphi(a)^{n} u .
$$

Therefore φ is pseudo n-Jordan homomorphism.
In this paper, we investigate the Hyers-Ulam-Rassias stability of mixed n-Jordan homomorphisms on Banach algebras and the superstability of mixed n-Jordan $*$-homomorphism between C^{*}-algebras.

2. Stability of Mixed n-Jordan Homomorphisms

We commence with the following characterization of mixed n-Jordan homomorphisms.

Theorem 2.1. Every mixed n-Jordan homomorphism φ between commutative algebras \mathcal{A} and \mathcal{B} is $(n+1)$-homomorphism.

Proof. Since every mixed n-Jordan homomorphism is $(n+1)$-Jordan homomorphism, so the result follows from Theorem 2.2 of [3].

Theorem 2.2. Let \mathcal{A} be a unital Banach algebra, \mathcal{B} be a semisimple commutative Banach algebra. Then every mixed n-Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ is an $(n+1)$-homomorphism.

Proof. This result follows from Corollary 2.5 of [1].
Theorem 2.3. Let \mathcal{A} be a normed algebra, let \mathcal{B} be a Banach algebra, let δ and ε be nonnegative real numbers, and let p, q be a real numbers such that $(p-1)(q-1)>0, q \geq 0$. Assume that $f: \mathcal{A} \longrightarrow \mathcal{B}$ satisfies

$$
\begin{gather*}
\|f(a+b)-f(a)-f(b)\| \leq \varepsilon\left(\|a\|^{p}+\|b\|^{p}\right), \tag{1}\\
\left\|f\left(a^{n} b\right)-f(a)^{n} f(b)\right\| \leq \delta\|a\|^{n q}\|b\|
\end{gather*}
$$

for all $a, b \in \mathcal{A}$. Then, there exists a unique mixed n-Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ such that

$$
\begin{equation*}
\|\varphi(a)-f(a)\| \leq \frac{2 \varepsilon}{\left|2-2^{p}\right|}\|a\|^{p}, \quad a \in \mathcal{A} \tag{3}
\end{equation*}
$$

Proof. Put $t:=-\operatorname{sgn}(p-1)$ and

$$
\varphi(x)=\lim _{m} \frac{1}{2^{t m}} f\left(2^{t m} x\right)
$$

for all $x \in \mathcal{A}$. It follows from [10] and [18] that φ is additive map satisfies (3). We will show that φ is mixed n-Jordan homomorphism. We have

$$
\begin{aligned}
\lim _{m} \frac{1}{2^{t m n}}\left(\left\|f\left(2^{t m n} a^{n} b\right)-f\left(2^{t m} a\right)^{n} f(b)\right\|\right) & \leq \lim _{m} \frac{\delta}{2^{t m n}}\left\|2^{t m} a\right\|^{n q}\|b\| \\
& \leq \lim _{m} \frac{\delta}{2^{t m n}} 2^{t m n q}\|a\|^{n q}\|b\| \\
& \leq \lim _{m} 2^{t m n(q-1)}\left(\delta\|a\|^{n q}\|b\|\right)=0
\end{aligned}
$$

Thus, we get

$$
\begin{aligned}
\varphi\left(a^{n} b\right) & =\lim _{m} \frac{1}{2^{t m n}} f\left(2^{t m n} a^{n} b\right) \\
& =\lim _{m} \frac{1}{2^{t m n}}\left\{f\left(2^{t m n} a^{n} b\right)-f\left(2^{t m n} a^{n} b\right)+f\left(2^{t m} a\right)^{n} f(b)\right\} \\
& =\lim _{m} \frac{1}{2^{t m n}} f\left(2^{t m} a\right)^{n} f(b) \\
& =\varphi(a)^{n} f(b)
\end{aligned}
$$

So $\varphi\left(a^{n} b\right)=\varphi(a)^{n} f(b)$, for all $a, b \in \mathcal{A}$. Therefore we have

$$
\begin{aligned}
\left\|\varphi\left(a^{n} b\right)-\varphi(a)^{n} \varphi(b)\right\| & \leq\left\|\varphi\left(a^{n} b\right)-\varphi(a)^{n} f(b)\right\|+\left\|\varphi(a)^{n} f(b)-\varphi(a)^{n} \varphi(b)\right\| \\
& \leq\|\varphi(a)\|^{n}\|f(b)-\varphi(b)\| \\
& \leq \frac{2 \varepsilon}{\left|2-2^{p}\right|}\|b\|^{p}\|\varphi(a)\|^{n} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left\|\varphi\left(a^{n} b\right)-\varphi(a)^{n} \varphi(b)\right\| \leq \frac{2 \varepsilon}{\left|2-2^{p}\right|}\|b\|^{p}\|\varphi(a)\|^{n} . \tag{4}
\end{equation*}
$$

Replacing b by $2^{t m} b$ in (4), gives

$$
\left\|\varphi\left(a^{n} b\right)-\varphi(a)^{n} \varphi(b)\right\| \leq \frac{2 \varepsilon}{\left|2-2^{p}\right|}\|b\|^{p}\|\varphi(a)\|^{n} \lim _{m} 2^{\operatorname{tm(p-1)}}=0 .
$$

So $\varphi\left(a^{n} b\right)=\varphi(a)^{n} \varphi(b)$ and φ is mixed n-Jordan homomorphism. The uniqueness property of φ follows from [10] and [18].

The next result follows from above Theorem.
Corollary 2.4. Let \mathcal{A} be a Banach algebra and let $f: \mathcal{A} \longrightarrow \mathcal{A}$ satisfies in (1) and (2). Assume that f has a fixed point u. Then there exists a unique pseudo n-Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow \mathcal{A}$ such that

$$
\|\varphi(u)-u\| \leq \frac{2 \varepsilon}{\left|2-2^{p}\right|}\|u\|^{p} .
$$

Theorem 2.5. Let \mathcal{A} be a normed algebra, let \mathcal{B} be a Banach algebra, let δ and ε be nonnegative real numbers, and let p, q be a real numbers such that $(p-1)(q-1)>0$, and $q<0$. Assume that $f: \mathcal{A} \longrightarrow \mathcal{B}$ be a mapping with $f(0)=0$, such that the inequalities (1) and (2) are hold. Then, there exists a unique mixed n-Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ such that

$$
\begin{equation*}
\|\varphi(a)-f(a)\| \leq \frac{2 \varepsilon}{\left|2-2^{p}\right|}\|a\|^{p} \tag{5}
\end{equation*}
$$

for all $a \in \mathcal{A}$.
Proof. It follows from [18] that there exists an additive map $\varphi: \mathcal{A} \longrightarrow$ \mathcal{B} satisfies (5), where we assume that $\|0\|^{p}=\infty$. We show that

$$
\varphi\left(a^{n} b\right)=\varphi(a)^{n} \varphi(b),
$$

for all $a, b \in \mathcal{A}$. Since φ is additive, we have $\varphi(0)=0$. Hence the result is valid for $a=0$ or $b=0$. Suppose that $a, b \in \mathcal{A} \backslash\{0\}$ be arbitrarily. If $a^{n} \neq 0$ and $b \neq 0$, then the proof of Theorem 2.3 works well, and φ is
mixed n-Jordan homomorphism. Now let $a^{n}=0$ and $b \neq 0$. It follows from (2), with the hypothesis $f(0)=0$ that

$$
\begin{equation*}
\frac{1}{2^{m n}}\left\|f\left(2^{m} a\right)^{n} f(b)\right\| \leq \frac{\delta}{2^{m n}}\left\|2^{m} a\right\|^{n q}\|b\|=2^{m n(q-1)} \delta\|a\|^{n q}\|b\| \tag{6}
\end{equation*}
$$

Since $a, b \in \mathcal{A} \backslash\{0\}$ and $(q-1)<0$, we get

$$
\begin{equation*}
\lim _{m} \frac{1}{2^{m n}} f\left(2^{m} a\right)^{n} f(b)=\lim _{m} 2^{m n(q-1)} \delta\|a\|^{n q}\|b\|=0 \tag{7}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\varphi(a)=\lim _{m} \frac{1}{2^{m}} f\left(2^{m} a\right), \quad a \in \mathcal{A} \tag{8}
\end{equation*}
$$

Thus, by (7) and (8),

$$
\varphi(a)^{n} f(b)=\lim _{m}\left\{\frac{1}{2^{m n}} f\left(2^{m} a\right)^{n}\right\} f(b)=0
$$

Hence $\varphi(a)^{n} f(b)=0$. Now we prove that $\varphi(a)^{n} \varphi(b)=0$. To this

$$
\begin{aligned}
\left\|\varphi(a)^{n} \varphi(b)\right\| & =\left\|\varphi(a)^{n} \varphi(b)-\varphi(a)^{n} f(b)\right\| \\
& \leq\|\varphi(a)\|^{n}\|\varphi(b)-f(b)\| \\
& \leq \frac{2 \varepsilon}{\left|2-2^{p}\right|}\|b\|^{p}\|\varphi(a)\|^{n}
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\left\|\varphi(a)^{n} \varphi(b)\right\| \leq \frac{2 \varepsilon}{\left|2-2^{p}\right|}\|b\|^{p}\|\varphi(a)\|^{n} \tag{9}
\end{equation*}
$$

Replacing b by $2^{t m} b$ in (9), gives

$$
\left\|\varphi(a)^{n} \varphi(b)\right\| \leq \frac{2 \varepsilon}{\left|2-2^{p}\right|}\|b\|^{p}\|\varphi(a)\|^{n} \lim _{m} 2^{t m(p-1)}=0
$$

Therefore $\varphi(a)^{n} \varphi(b)=0$, which proves that $\varphi(a)^{n} \varphi(b)=0=\varphi\left(a^{n} b\right)$, whenever $a^{n}=0$. This completes the proof.

As a consequence of Theorem 2.3, 2.5 and Theorem 2.1 we have the following.

Corollary 2.6. Suppose that \mathcal{A} and \mathcal{B} are commutative Banach algebras. Let δ and ε be nonnegative real numbers, and let p, q be a real numbers such that $(p-1)(q-1)>0, q \geq 0$ or $(p-1)(q-1)>0, q<0$ and $f(0)=0$. Assume that $f: \mathcal{A} \longrightarrow \mathcal{B}$ satisfies (1) and (2). Then, there exists a unique $(n+1)$-homomorphism $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ such that

$$
\|\varphi(x)-f(x)\| \leq \frac{2 \varepsilon}{\left|2-2^{p}\right|}\|x\|^{p}, \quad x \in \mathcal{A}
$$

From Theorem 2.3, 2.5 and Theorem 2.2 we have the next result.
Corollary 2.7. Suppose that \mathcal{A} is a unital Banach algebra, and suppose \mathcal{B} is a semisimple commutative Banach algebra. Let δ and ε be nonnegative real numbers, and let p, q be a real numbers such that $(p-1)(q-1)>0, q \geq 0$ or $(p-1)(q-1)>0, q<0$ and $f(0)=0$. Assume that $f: \mathcal{A} \longrightarrow \mathcal{B}$ satisfies (1) and (2). Then, there exists a unique $(n+1)$-homomorphism $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ such that

$$
\|\varphi(x)-f(x)\| \leq \frac{2 \varepsilon}{\left|2-2^{p}\right|}\|x\|^{p},
$$

for all $x \in \mathcal{A}$.
Theorem 2.8. Let $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ be a linear map such that

$$
\begin{equation*}
\left\|\varphi\left(a^{n} b\right)-\varphi(a)^{n} \varphi(b)\right\| \leqslant \delta(\|a\| \pm\|b\|), \quad a, b \in \mathcal{A} \tag{10}
\end{equation*}
$$

for some $\delta>0$. Then φ is $(n+1)$-Jordan homomorphism.
Proof. Suppose that for all $a, b \in \mathcal{A}$,

$$
\left\|\varphi\left(a^{n} b\right)-\varphi(a)^{n} \varphi(b)\right\| \leqslant \delta(\|a\|-\|b\|)
$$

Replacing b by a, we get $\varphi\left(a^{n+1}\right)=\varphi(a)^{n+1}$, for all $a \in \mathcal{A}$. So φ is $(n+1)$-Jordan homomorphism. Now let for all $a, b \in \mathcal{A}$,

$$
\begin{equation*}
\left\|\varphi\left(a^{n} b\right)-\varphi(a)^{n} \varphi(b)\right\| \leqslant \delta(\|a\|+\|b\|) . \tag{11}
\end{equation*}
$$

Interchanging b by a in (11), gives

$$
\begin{equation*}
\left\|\varphi\left(a^{n+1}\right)-\varphi(a)^{n+1}\right\| \leqslant 2 \delta\|a\| . \tag{12}
\end{equation*}
$$

Setting $a=2^{m} x$, we get

$$
\begin{equation*}
\left\|\varphi\left(x^{n+1}\right)-\varphi(x)^{n+1}\right\| \leqslant \frac{\delta 2^{m+1}}{2^{m(n+1)}}\|x\| . \tag{13}
\end{equation*}
$$

Letting $m \longrightarrow \infty$, we obtain $\varphi\left(x^{n+1}\right)=\varphi(x)^{n+1}$ and hence the result follows.

3. Superstability of Mixed n-Jordan $*$-Homomorphisms

Throughout this section, assume that \mathcal{A}, \mathcal{B} be a C^{*}-algebras. A mixed n-Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ is called a mixed (pseudo) n-Jordan *-homomorphism if

$$
\varphi\left(a^{*}\right)=\varphi(a)^{*}, \quad a \in \mathcal{A} .
$$

Now we investigate the superstability of mixed n-Jordan *homomorphism between C^{*}-algebras.

Lemma 3.1. Let $f: \mathcal{A} \longrightarrow \mathcal{B}$ be an additive mapping such that $f(\lambda a)=\lambda f(a)$ for all $a \in \mathcal{A}$ and for all $\lambda \in \mathbb{T}:=\{\alpha \in \mathbb{C}:|\alpha|=1\}$. Then the mapping f is \mathbb{C}-linear.

Proof. See [16]
Lemma 3.2. Let $f: \mathcal{A} \longrightarrow \mathcal{B}$ be a mapping such that

$$
\left\|f\left(\frac{b-a}{3}\right)+f\left(\frac{a-3 c}{3}\right)+f\left(\frac{3 a+3 c-b}{3}\right)\right\| \leq\|f(a)\|
$$

for all $a, b, c \in \mathcal{A}$. Then f is additive.
Proof. See [8]
Theorem 3.3. Let $p<1, \delta$ be nonnegative real numbers and let $f: \mathcal{A} \longrightarrow \mathcal{B}$ satisfies

$$
\begin{align*}
\| f\left(\frac{b-a}{3} \lambda\right)+f\left(\frac{a-3 c}{3} \lambda\right)+\lambda & f\left(\frac{3 a+3 c-b}{3}\right)\|\leq\| f(a) \|, \tag{14}\\
\left\|f\left(a^{n} b\right)-f(a)^{n} f(b)\right\| & \leq \delta\|a\|^{n p}\|b\|^{p} \tag{15}\\
\left\|f\left(a^{*}\right)-f(a)^{*}\right\| & \leq \delta\left\|a^{*}\right\|^{p} \tag{16}
\end{align*}
$$

for all $\lambda \in \mathbb{T}:=\{\alpha \in \mathbb{C}:|\alpha|=1\}$ and for all $a, b, c \in \mathcal{A}$. Then f is mixed n-Jordan $*$-homomorphism

Proof. Take $\lambda=1$ in (14), then by Lemma 3.2 the mapping f is additive and so $f(0)=0$. Letting $a=b=0$ in (14), gives

$$
\|f(-\lambda c)+\lambda f(c)\| \leq\|f(0)\|=0
$$

Thus, for all $c \in \mathcal{A}$ and for all $\lambda \in \mathbb{T}$,

$$
f(\lambda c)=\lambda f(c)
$$

By Lemma 3.1 the mapping $f: \mathcal{A} \longrightarrow \mathcal{B}$ is \mathbb{C}-linear. It follows from (15) that

$$
\begin{aligned}
\left\|f\left(a^{n} b\right)-f(a)^{n} f(b)\right\| & =\left\|\frac{1}{m^{n}} f\left(m^{n} a^{n} b\right)-\left(\frac{1}{m} f(m a)\right)^{n} f(b)\right\| \\
& \leq \frac{1}{m^{n}}\left\|f\left(m^{n} a^{n} b\right)-f(m a)^{n} f(b)\right\| \\
& \leq \frac{\delta}{m^{n}} m^{n p}\|a\|^{n p}\|b\|^{p}
\end{aligned}
$$

for all $a, b \in \mathcal{A}$. Since $p<1$, by letting $m \longrightarrow \infty$, we get

$$
f\left(a^{n} b\right)=f(a)^{n} f(b)
$$

for all $a, b \in \mathcal{A}$. It follows from (15) that

$$
\begin{aligned}
\left\|f\left(a^{*}\right)-f(a)^{*}\right\| & =\left\|\frac{1}{m} f\left(m a^{*}\right)-\left(\frac{1}{m} f(m a)\right)^{*}\right\| \\
& \leq \frac{1}{m}\left\|f\left(m a^{*}\right)-f(m a)^{*}\right\| \\
& \leq \frac{\delta}{m} m^{p}\left\|a^{*}\right\|^{p},
\end{aligned}
$$

for all $a, b \in \mathcal{A}$. Since $p<1$, by letting $m \longrightarrow \infty$, we get

$$
f\left(a^{*}\right)=f(a)^{*},
$$

for all $a \in \mathcal{A}$.
Corollary 3.4. Let $p<1, \delta$ be nonnegative real numbers and f : $\mathcal{A} \longrightarrow \mathcal{A}$ satisfies (14) and (16). If f has a fixed point u, such that

$$
\left\|f\left(a^{n} u\right)-f(a)^{n} u\right\| \leq \delta\|a\|^{n p}\|u\|^{p}, \quad a \in \mathcal{A},
$$

then f is pseudo n-Jordan *-homomorphism.
The proof of the next result is similar to the proof of Theorem 3.3.
Theorem 3.5. Let $p>1, \delta$ be nonnegative real numbers and f : $\mathcal{A} \longrightarrow \mathcal{B}$ satisfies (14), (15) and (16). Then the mapping f is mixed n-Jordan *-homomorphism.

In the next example we show that Theorem 3.3 and Theorem 3.5 are fails for $p=1$.

Example 3.6. Define $f: \mathbb{R} \longrightarrow \mathbb{R}$ by $f(a)=M a$ where $M=$ $\frac{1+\sqrt{1+4 \delta}}{2}$ and $\delta>0$. Then for all $a, b \in \mathbb{R}$,

$$
f(a+b)=f(a)+f(b) .
$$

Hence f is additive. Since $M^{2}=M+\delta$, so we get

$$
\begin{aligned}
\left\|f\left(a^{2} b\right)-f(a)^{2} f(b)\right\| & =\left\|M a^{2} b-(M a)^{2}(M b)\right\| \\
& =\left\|M a^{2} b-(M+\delta) M a^{2} b\right\| \\
& =\left\|-\delta M a^{2} b-\delta a^{2} b\right\| \\
& =(M+1) \delta\|a\|^{2}\|b\| .
\end{aligned}
$$

Thus, f fulfills in Theorem 3.3 with $n=2$ and $p=1$. However, the mapping f is not mixed Jordan $*$-homomorphism unless $\delta=0$.

A linear mapping $D: \mathcal{A} \longrightarrow \mathcal{A}$ is called a mixed n-Jordan derivation if for all $a, b \in \mathcal{A}$,

$$
D\left(a^{n} b\right)=D\left(a^{n}\right) b+a^{n} D(b)
$$

Now we investigate the superstability of mixed n-Jordan derivation.
Theorem 3.7. Let $p>1, \delta$ be nonnegative real numbers and let $f: \mathcal{A} \longrightarrow \mathcal{A}$ be a mapping satisfying (14), such that

$$
\begin{equation*}
\left\|f\left(a^{n} b\right)-f\left(a^{n}\right) b-a^{n} f(b)\right\| \leq \delta\|a\|^{n p}\|b\|^{p} \tag{17}
\end{equation*}
$$

for all $a, b \in \mathcal{A}$. Then $f: \mathcal{A} \longrightarrow \mathcal{A}$ is a mixed n-Jordan derivation.
Proof. By the same method as in the proof of Theorem 3.3, the mapping $f: \mathcal{A} \longrightarrow \mathcal{A}$ is \mathbb{C}-linear. It follows from (17) that

$$
\begin{aligned}
\left\|f\left(a^{n} b\right)-f\left(a^{n}\right) b-a^{n} f(b)\right\| & =L\left\|f\left(\frac{a^{n}}{2^{m n}} \frac{b}{2^{m}}\right)-f\left(\frac{a^{n}}{2^{m n}}\right) \frac{b}{2^{m}}-\frac{a^{n}}{2^{m n}} f\left(\frac{b}{2^{m}}\right)\right\| \\
& \leq L \frac{\delta}{L^{p}}\|a\|^{n p}\|b\|^{p}
\end{aligned}
$$

for all $a, b \in \mathcal{A}$, where $L=2^{m(n+1)}$. Since $p>1$, by letting $m \longrightarrow \infty$, we get

$$
f\left(a^{n} b\right)=f\left(a^{n}\right) b+a^{n} f(b), \quad a, b \in \mathcal{A}
$$

Thus, f is a mixed n-Jordan derivation.
An analogous result of Theorem 3.7 is also holds for $p<1$. Moreover, if we take $n=1$ in preceding result, then we get Theorem 2.5 of [17].

Acknowledgments

The authors would like to express his sincere thanks to the referees for this paper.

References

[1] G. An, Characterization of n-Jordan homomorphism, Lin. Multi. Algebra, 66(4), (2018), 671-680.
[2] R. Badora, On approximate ring homomorphisms, J. Math. Anal. Appl. 276 (2002), 589-597.
[3] A. Bodaghi and H. İnceboz, n-Jordan homomorphisms on commutative algebras, Acta. Math. Univ. Comenianae, 87(1), (2018), 141-146.
[4] A. Bodaghi and H. İnceboz, Extension of Zelazko's theorem to n-Jordan homomorphisms, Adv. Pure Appl. Math. 10(2) (2019), 165-170.
[5] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949), 385-397.
[6] A. Ebadian, A. Jabbari and N. Kanzi, n-Jordan homomorphisms and Pseudo n-Jordan homomorphisms on Banach algebras, Mediterr. J. Math. 14(241), (2017), 1-11.
[7] M. Eshaghi Gordji, n-Jordan homomorphisms, Bull. Aust. Math. Soc. 80(1), (2009), 159-164.
[8] M. Eshaghi Gordji, N. Ghobadipour and C. Park, Jordan *-homomorphisms on C^{*}-algebras, Operators and Matrices, 5 (2011), 541-551.
[9] M. Eshaghi Gordji, T. Karimi, and S. K. Gharetapeh, Approximately n-Jordan Homomorphisms on Banach algebras, J. Ineq. Appli. 2009, Article ID 870843, (2009), 1-8.
[10] Z. Gajda, On stability of additive mappings, Inter. J. Math. Math. Sci. 14 (1991), 431-434.
[11] I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1956), 331-341.
[12] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224.
[13] Y. H. Lee, Stability of n-Jordan Homomorphisms from a Normed Algebra to a Banach Algebra, Abst. Appli. Anal. 2013, Article ID 691025, (2013), 1-5.
[14] T. Miura, S. E. Takahasi, and G. Hirasawa, Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras, J. Ineq. Appl. 2005 (2005), 435441.
[15] M. Neghabi, A. Bodaghi and A. Zivari-Kazempour, Characterization of mixed n-Jordan homomorphisms and pseudo n-Jordan homomorphisms, Filomat, to appear.
[16] C. Park, Homomorphisms between Poisson JC -algebras, Bull. Brazilian Math. Soc. 36 (2005), 79-97.
[17] C. Park and A. Nejati, Homomorphisms and derivation on C^{*}-algebras, Abst. Appli. Anal. 2007 Article ID 80630, (2007), 1-12.
[18] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[19] Th. M. Rassias, The stability of mappings and related topics, in Report on the 27th ISFE, Aequationes Math. 39 (1990), 292-293.
[20] S. M. Ulam, Problems in Modern Mathematics, Chap. VI, Wiley, New York, 1960.
[21] W. Zelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math. 30 (1968), 83-85.
[22] A. Zivari-Kazempour, A characterization of 3-Jordan homomorphism on Banach algebras, Bull. Aust. Math. Soc. 93(2), (2016), 301-306.

Abbas Zivari-Kazempour
Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran
E-mail: zivari@abru.ac.ir, zivari6526@gmail.com

Mohammad Valaei
Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran
E-mail: Mohammad.valaei@abru.ac.ir

[^0]: Received June 4, 2020. Revised November 20, 2020. Accepted November 20, 2020.

 2010 Mathematics Subject Classification. 46H40, 47A10.
 Key words and phrases. Mixed n-Jordan homomorphisms, Pseudo n-Jordan homomorphisms, *-homomorphism.
 *Corresponding author

