Honam Mathematical J. **42** (2020), No. 4, pp. 757–768 https://doi.org/10.5831/HMJ.2020.42.4.757

ON APPROXIMATE MIXED *n*-JORDAN HOMOMORPHISMS ON BANACH ALGEBRAS

ABBAS ZIVARI-KAZEMPOUR* AND MOHAMMAD VALAEI

Abstract. In this paper, the Hyers-Ulam-Rassias stability of mixed n-Jordan homomorphisms on Banach algebras and the superstability of mixed n-Jordan *-homomorphism between C^* -algebras are investigated.

1. Introduction

Let X be real normed space and Y be real Banach space. S. M. Ulam [20] posed the problem: When does a linear mapping near an approximately additive mapping $f: X \longrightarrow Y$ exist?

In 1941, Hyers [12] gave an affirmative answer to the question of Ulam for additive Cauchy equation in Banach space.

Let X and Y be two Banach spaces and let $f: X \longrightarrow Y$ be a mapping satisfying:

$$\|f(x+y) - f(x) - f(y)\| \le \varepsilon,$$

for all $x, y \in X$ and $\varepsilon > 0$. Then there is a unique additive mapping $F: X \longrightarrow Y$ which satisfies

$$||F(x) - f(x)|| \le \varepsilon, \quad x \in X.$$

Th. M. Rassias [18] considered a generalized version of the Hyers's result which permitted the Cauchy difference to become unbounded. That is, he proved:

Received June 4, 2020. Revised November 20, 2020. Accepted November 20, 2020.

²⁰¹⁰ Mathematics Subject Classification. 46H40, 47A10.

Key words and phrases. Mixed $n\mbox{-}{\rm Jordan}$ homomorphisms, Pseudo $n\mbox{-}{\rm Jordan}$ homomorphisms, *-homomorphism.

^{*}Corresponding author

Theorem 1.1. Let X and Y be two real Banach spaces, $\varepsilon \ge 0$ and $0 \le p < 1$. If a mapping $f: X \longrightarrow Y$ satisfies

$$||f(x+y) - f(x) - f(y)|| \le \varepsilon (||x||^p + ||y||^p),$$

for all $x, y \in X$, then there is a unique additive mapping $F: X \longrightarrow Y$ such that

$$||F(x) - f(x)|| \le \frac{2\varepsilon}{|2 - 2^p|} ||x||^p, \quad x \in X.$$

If, in addition, for each fixed $x \in X$ the function $t \mapsto f(tx)$ is continuous in $t \in \mathbb{R}$, then F is linear.

This result is called the Hyers-Ulam-Rassias stability of the additive Cauchy equation. In [10], Gajda proved that Theorem 1.1 is valid for p > 1, which was raised by Rassias [19]. He also gave an example showing that a similar result to the above does not hold for p = 1. If p < 0, then $||x||^p$ is meaningless for x = 0; in this case, if we assume that $||0||^p = \infty$, then the proof given in [18] also works for $x \neq 0$. Thus, the Hyers-Ulam-Rassias stability of the additive Cauchy equation holds for $p \in \mathbb{R} \setminus \{1\}$.

An additive mapping $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ between Banach algebras is called *n*-Jordan homomorphism if $\varphi(a^n) = \varphi(a)^n$, for all $a \in \mathcal{A}$.

If n = 2, then φ is called simply a Jordan homomorphism. The concept of *n*-Jordan homomorphism was dealt with firstly by Herstein in [11]. See also [4], [21] and [22], for characterization of Jordan and 3-Jordan homomorphism.

Badora [2] proved the Hyers-Ulam-Rassias stability of ring homomorphisms, which generalizes the result of Bourgin [5]. The Hyers-Ulam-Rassias stability of Jordan homomorphisms investigated by Miura et al. [14], and it is extended to n-Jordan homomorphisms in [9] and [13].

Let \mathcal{A} and \mathcal{B} be complex algebras and $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be a linear map. Then φ is called an *mixed n-Jordan homomorphism* if for all $a, b \in \mathcal{A}$,

$$\varphi(a^n b) = \varphi(a)^n \varphi(b).$$

A mixed 2-Jordan homomorphism is said to be mixed Jordan homomorphism. The notation of mixed n-Jordan homomorphisms is introduced by Neghabi, Bodaghi and Zivar-Kazempour in [15] for the first time.

The following example which is obtained in [15], proves that the mixed n-Jordan homomorphisms are different from the n-Jordan homomorphisms.

Example 1.2. Let

$$\mathcal{A} = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix} : \quad a, b, c \in \mathbb{R} \right\},$$

and define $\varphi : \mathcal{A} \longrightarrow \mathcal{A}$ via

$$\varphi\left(\begin{bmatrix}0&a&b\\0&0&c\\0&0&0\end{bmatrix}\right) = \begin{bmatrix}0&a&0\\0&0&c\\0&0&0\end{bmatrix}$$

Then, $\varphi(X^2) \neq \varphi(X)^2$, for all $X \in \mathcal{A}$. Hence, φ is not Jordan homomorphism, and so it is not homomorphism. But for all $n \geq 3$ and for all $X, Y \in \mathcal{A}$, we have $\varphi(X^n Y) = \varphi(X)^n \varphi(Y)$. Therefore, φ is mixed *n*-Jordan homomorphism for all $n \geq 3$.

Let \mathcal{A} and \mathcal{B} be complex algebras, and let \mathcal{B} be a right [left] \mathcal{A} module. Then a linear map $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ is saied to be *pseudo n-Jordan homomorphism* if there exiest an element $w \in \mathcal{A}$ such that for all $a \in \mathcal{A}$,

$$\varphi(a^n w) = \varphi(a)^n \cdot w, \quad [\varphi(wa^n) = w \cdot \varphi(a)^n].$$

The concept of pseudo n-Jordan homomorphism was introduced and studied by Ebadian et al., in [6].

Let $\varphi : \mathcal{A} \longrightarrow \mathcal{A}$ be a mixed *n*-Jordan homomorphism with a fixed point *u*. Then for all $a \in \mathcal{A}$,

$$\varphi(a^n u) = \varphi(a)^n \varphi(u) = \varphi(a)^n u.$$

Therefore φ is pseudo *n*-Jordan homomorphism.

In this paper, we investigate the Hyers-Ulam-Rassias stability of mixed n-Jordan homomorphisms on Banach algebras and the superstability of mixed n-Jordan *-homomorphism between C^* -algebras.

2. Stability of Mixed *n*-Jordan Homomorphisms

We commence with the following characterization of mixed n-Jordan homomorphisms.

Theorem 2.1. Every mixed *n*-Jordan homomorphism φ between commutative algebras \mathcal{A} and \mathcal{B} is (n+1)-homomorphism.

Proof. Since every mixed *n*-Jordan homomorphism is (n + 1)-Jordan homomorphism, so the result follows from Theorem 2.2 of [3].

Theorem 2.2. Let \mathcal{A} be a unital Banach algebra, \mathcal{B} be a semisimple commutative Banach algebra. Then every mixed *n*-Jordan homomorphism $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ is an (n + 1)-homomorphism.

Proof. This result follows from Corollary 2.5 of [1].

Theorem 2.3. Let \mathcal{A} be a normed algebra, let \mathcal{B} be a Banach algebra, let δ and ε be nonnegative real numbers, and let p, q be a real numbers such that $(p-1)(q-1) > 0, q \ge 0$. Assume that $f : \mathcal{A} \longrightarrow \mathcal{B}$ satisfies

(1)
$$||f(a+b) - f(a) - f(b)|| \le \varepsilon (||a||^p + ||b||^p),$$

(2)
$$||f(a^n b) - f(a)^n f(b)|| \le \delta ||a||^{nq} ||b||,$$

for all $a, b \in \mathcal{A}$. Then, there exists a unique mixed *n*-Jordan homomorphism $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ such that

(3)
$$\|\varphi(a) - f(a)\| \le \frac{2\varepsilon}{|2 - 2^p|} \|a\|^p, \quad a \in \mathcal{A}.$$

Proof. Put t := -sgn(p-1) and

$$\varphi(x) = \lim_{m} \frac{1}{2^{tm}} f(2^{tm}x),$$

for all $x \in \mathcal{A}$. It follows from [10] and [18] that φ is additive map satisfies (3). We will show that φ is mixed *n*-Jordan homomorphism. We have

$$\begin{split} \lim_{m} \frac{1}{2^{tmn}} \left(\|f(2^{tmn}a^{n}b) - f(2^{tm}a)^{n}f(b)\| \right) &\leq \lim_{m} \frac{\delta}{2^{tmn}} \|2^{tm}a\|^{nq} \|b\| \\ &\leq \lim_{m} \frac{\delta}{2^{tmn}} 2^{tmnq} \|a\|^{nq} \|b\| \\ &\leq \lim_{m} 2^{tmn(q-1)} \left(\delta \|a\|^{nq} \|b\| \right) = 0. \end{split}$$

Thus, we get

$$\begin{split} \varphi(a^{n}b) &= \lim_{m} \frac{1}{2^{tmn}} f(2^{tmn}a^{n}b) \\ &= \lim_{m} \frac{1}{2^{tmn}} \{ f(2^{tmn}a^{n}b) - f(2^{tmn}a^{n}b) + f(2^{tm}a)^{n}f(b) \} \\ &= \lim_{m} \frac{1}{2^{tmn}} f(2^{tm}a)^{n}f(b) \\ &= \varphi(a)^{n}f(b). \end{split}$$

So $\varphi(a^n b) = \varphi(a)^n f(b)$, for all $a, b \in \mathcal{A}$. Therefore we have $\|\varphi(a^n b) - \varphi(a)^n \varphi(b)\| \le \|\varphi(a^n b) - \varphi(a)^n f(b)\| + \|\varphi(a)^n f(b) - \varphi(a)^n \varphi(b)\|$ $\le \|\varphi(a)\|^n \|f(b) - \varphi(b)\|$ $\le \frac{2\varepsilon}{|2 - 2^p|} \|b\|^p \|\varphi(a)\|^n.$

Hence

(4)
$$\|\varphi(a^n b) - \varphi(a)^n \varphi(b)\| \le \frac{2\varepsilon}{|2 - 2^p|} \|b\|^p \|\varphi(a)\|^n.$$

Replacing b by $2^{tm}b$ in (4), gives

$$\|\varphi(a^{n}b) - \varphi(a)^{n}\varphi(b)\| \le \frac{2\varepsilon}{|2-2^{p}|} \|b\|^{p} \|\varphi(a)\|^{n} \lim_{m} 2^{tm(p-1)} = 0.$$

So $\varphi(a^n b) = \varphi(a)^n \varphi(b)$ and φ is mixed *n*-Jordan homomorphism. The uniqueness property of φ follows from [10] and [18].

The next result follows from above Theorem.

Corollary 2.4. Let \mathcal{A} be a Banach algebra and let $f : \mathcal{A} \longrightarrow \mathcal{A}$ satisfies in (1) and (2). Assume that f has a fixed point u. Then there exists a unique pseudo *n*-Jordan homomorphism $\varphi : \mathcal{A} \longrightarrow \mathcal{A}$ such that

$$\|\varphi(u) - u\| \le \frac{2\varepsilon}{|2 - 2^p|} \|u\|^p.$$

Theorem 2.5. Let \mathcal{A} be a normed algebra, let \mathcal{B} be a Banach algebra, let δ and ε be nonnegative real numbers, and let p, q be a real numbers such that (p-1)(q-1) > 0, and q < 0. Assume that $f : \mathcal{A} \longrightarrow \mathcal{B}$ be a mapping with f(0) = 0, such that the inequalities (1) and (2) are hold. Then, there exists a unique mixed *n*-Jordan homomorphism $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ such that

(5)
$$\|\varphi(a) - f(a)\| \le \frac{2\varepsilon}{|2 - 2^p|} \|a\|^p,$$

for all $a \in \mathcal{A}$.

Proof. It follows from [18] that there exists an additive map $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ satisfies (5), where we assume that $\|0\|^p = \infty$. We show that

$$\varphi(a^n b) = \varphi(a)^n \varphi(b),$$

for all $a, b \in \mathcal{A}$. Since φ is additive, we have $\varphi(0) = 0$. Hence the result is valid for a = 0 or b = 0. Suppose that $a, b \in \mathcal{A} \setminus \{0\}$ be arbitrarily. If $a^n \neq 0$ and $b \neq 0$, then the proof of Theorem 2.3 works well, and φ is mixed *n*-Jordan homomorphism. Now let $a^n = 0$ and $b \neq 0$. It follows from (2), with the hypothesis f(0) = 0 that

(6)
$$\frac{1}{2^{mn}} \|f(2^m a)^n f(b)\| \le \frac{\delta}{2^{mn}} \|2^m a\|^{nq} \|b\| = 2^{mn(q-1)} \delta \|a\|^{nq} \|b\|.$$

Since $a, b \in \mathcal{A} \setminus \{0\}$ and (q-1) < 0, we get

(7)
$$\lim_{m} \frac{1}{2^{mn}} f(2^m a)^n f(b) = \lim_{m} 2^{mn(q-1)} \delta ||a||^{nq} ||b|| = 0.$$

On the other hand, we have

(8)
$$\varphi(a) = \lim_{m} \frac{1}{2^m} f(2^m a), \quad a \in \mathcal{A}$$

Thus, by (7) and (8),

$$\varphi(a)^n f(b) = \lim_m \{ \frac{1}{2^{mn}} f(2^m a)^n \} f(b) = 0.$$

Hence $\varphi(a)^n f(b) = 0$. Now we prove that $\varphi(a)^n \varphi(b) = 0$. To this

$$\begin{aligned} \|\varphi(a)^{n}\varphi(b)\| &= \|\varphi(a)^{n}\varphi(b) - \varphi(a)^{n}f(b)\| \\ &\leq \|\varphi(a)\|^{n}\|\varphi(b) - f(b)\| \\ &\leq \frac{2\varepsilon}{|2-2^{p}|}\|b\|^{p}\|\varphi(a)\|^{n}. \end{aligned}$$

Consequently,

(9)
$$\|\varphi(a)^n\varphi(b)\| \le \frac{2\varepsilon}{|2-2^p|} \|b\|^p \|\varphi(a)\|^n.$$

Replacing b by $2^{tm}b$ in (9), gives

$$\|\varphi(a)^n \varphi(b)\| \le \frac{2\varepsilon}{|2-2^p|} \|b\|^p \|\varphi(a)\|^n \lim_m 2^{tm(p-1)} = 0.$$

Therefore $\varphi(a)^n \varphi(b) = 0$, which proves that $\varphi(a)^n \varphi(b) = 0 = \varphi(a^n b)$, whenever $a^n = 0$. This completes the proof.

As a consequence of Theorem 2.3, 2.5 and Theorem 2.1 we have the following.

Corollary 2.6. Suppose that \mathcal{A} and \mathcal{B} are commutative Banach algebras. Let δ and ε be nonnegative real numbers, and let p, q be a real numbers such that $(p-1)(q-1) > 0, q \ge 0$ or (p-1)(q-1) > 0, q < 0 and f(0) = 0. Assume that $f : \mathcal{A} \longrightarrow \mathcal{B}$ satisfies (1) and (2). Then, there exists a unique (n+1)-homomorphism $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ such that

$$\|\varphi(x) - f(x)\| \le \frac{2\varepsilon}{|2 - 2^p|} \|x\|^p, \quad x \in \mathcal{A}.$$

On approximate mixed *n*-Jordan homomorphisms on Banach algebras 763

From Theorem 2.3, 2.5 and Theorem 2.2 we have the next result.

Corollary 2.7. Suppose that \mathcal{A} is a unital Banach algebra, and suppose \mathcal{B} is a semisimple commutative Banach algebra. Let δ and ε be nonnegative real numbers, and let p, q be a real numbers such that $(p-1)(q-1) > 0, q \ge 0$ or (p-1)(q-1) > 0, q < 0 and f(0) = 0. Assume that $f : \mathcal{A} \longrightarrow \mathcal{B}$ satisfies (1) and (2). Then, there exists a unique (n + 1)-homomorphism $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ such that

$$\|\varphi(x) - f(x)\| \le \frac{2\varepsilon}{|2 - 2^p|} \|x\|^p,$$

for all $x \in \mathcal{A}$.

Theorem 2.8. Let $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be a linear map such that (10) $\|\varphi(a^n b) - \varphi(a)^n \varphi(b)\| \leq \delta(\|a\| \pm \|b\|), \quad a, b \in \mathcal{A},$ for some $\delta > 0$. Then φ is (n + 1)-Jordan homomorphism.

Proof. Suppose that for all $a, b \in \mathcal{A}$,

$$\|\varphi(a^n b) - \varphi(a)^n \varphi(b)\| \leq \delta(\|a\| - \|b\|).$$

Replacing b by a, we get $\varphi(a^{n+1}) = \varphi(a)^{n+1}$, for all $a \in \mathcal{A}$. So φ is (n+1)-Jordan homomorphism. Now let for all $a, b \in \mathcal{A}$,

(11)
$$\|\varphi(a^n b) - \varphi(a)^n \varphi(b)\| \leq \delta(\|a\| + \|b\|).$$

Interchanging b by a in (11), gives

(12)
$$\|\varphi(a^{n+1}) - \varphi(a)^{n+1}\| \leq 2\delta \|a\|.$$

Setting $a = 2^m x$, we get

(13)
$$\|\varphi(x^{n+1}) - \varphi(x)^{n+1}\| \leq \frac{\delta 2^{m+1}}{2^{m(n+1)}} \|x\|.$$

Letting $m \longrightarrow \infty$, we obtain $\varphi(x^{n+1}) = \varphi(x)^{n+1}$ and hence the result follows.

3. Superstability of Mixed *n*-Jordan *-Homomorphisms

Throughout this section, assume that \mathcal{A} , \mathcal{B} be a C^* -algebras. A mixed *n*-Jordan homomorphism $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ is called a mixed (pseudo) *n*-Jordan *-homomorphism if

$$\varphi(a^*) = \varphi(a)^*, \qquad a \in \mathcal{A}.$$

Now we investigate the superstability of mixed n-Jordan *-homomorphism between C^* -algebras.

Lemma 3.1. Let $f : \mathcal{A} \longrightarrow \mathcal{B}$ be an additive mapping such that $f(\lambda a) = \lambda f(a)$ for all $a \in \mathcal{A}$ and for all $\lambda \in \mathbb{T} := \{ \alpha \in \mathbb{C} : |\alpha| = 1 \}$. Then the mapping f is \mathbb{C} -linear.

Proof. See [16]

Lemma 3.2. Let $f : \mathcal{A} \longrightarrow \mathcal{B}$ be a mapping such that

$$\|f(\frac{b-a}{3}) + f(\frac{a-3c}{3}) + f(\frac{3a+3c-b}{3})\| \le \|f(a)\|,$$

for all $a, b, c \in A$. Then f is additive.

Proof. See [8]

Theorem 3.3. Let p < 1, δ be nonnegative real numbers and let $f : \mathcal{A} \longrightarrow \mathcal{B}$ satisfies

(14)
$$\|f(\frac{b-a}{3}\lambda) + f(\frac{a-3c}{3}\lambda) + \lambda f(\frac{3a+3c-b}{3})\| \le \|f(a)\|,$$

(15)
$$||f(a^n b) - f(a)^n f(b)|| \le \delta ||a||^{np} ||b||^p,$$

(16)
$$||f(a^*) - f(a)^*|| \le \delta ||a^*||^p,$$

for all $\lambda \in \mathbb{T} := \{ \alpha \in \mathbb{C} : |\alpha| = 1 \}$ and for all $a, b, c \in \mathcal{A}$. Then f is mixed n-Jordan *-homomorphism

Proof. Take $\lambda = 1$ in (14), then by Lemma 3.2 the mapping f is additive and so f(0) = 0. Letting a = b = 0 in (14), gives

$$||f(-\lambda c) + \lambda f(c)|| \le ||f(0)|| = 0$$

Thus, for all $c \in \mathcal{A}$ and for all $\lambda \in \mathbb{T}$,

$$f(\lambda c) = \lambda f(c).$$

By Lemma 3.1 the mapping $f : \mathcal{A} \longrightarrow \mathcal{B}$ is \mathbb{C} -linear. It follows from (15) that

$$\begin{aligned} \|f(a^{n}b) - f(a)^{n}f(b)\| &= \|\frac{1}{m^{n}}f(m^{n}a^{n}b) - (\frac{1}{m}f(ma))^{n}f(b)\| \\ &\leq \frac{1}{m^{n}}\|f(m^{n}a^{n}b) - f(ma)^{n}f(b)\| \\ &\leq \frac{\delta}{m^{n}}m^{np}\|a\|^{np}\|b\|^{p}, \end{aligned}$$

for all $a, b \in \mathcal{A}$. Since p < 1, by letting $m \longrightarrow \infty$, we get

$$f(a^n b) = f(a)^n f(b),$$

for all $a, b \in \mathcal{A}$. It follows from (15) that

$$\begin{aligned} \|f(a^*) - f(a)^*\| &= \|\frac{1}{m}f(ma^*) - (\frac{1}{m}f(ma))^*\| \\ &\leq \frac{1}{m}\|f(ma^*) - f(ma)^*\| \\ &\leq \frac{\delta}{m}m^p\|a^*\|^p, \end{aligned}$$

for all $a, b \in \mathcal{A}$. Since p < 1, by letting $m \longrightarrow \infty$, we get

$$f(a^*) = f(a)^*,$$

for all $a \in \mathcal{A}$.

Corollary 3.4. Let p < 1, δ be nonnegative real numbers and $f : \mathcal{A} \longrightarrow \mathcal{A}$ satisfies (14) and (16). If f has a fixed point u, such that

$$|f(a^n u) - f(a)^n u|| \le \delta ||a||^{np} ||u||^p, \quad a \in \mathcal{A},$$

then f is pseudo n-Jordan *-homomorphism.

The proof of the next result is similar to the proof of Theorem 3.3.

Theorem 3.5. Let p > 1, δ be nonnegative real numbers and $f : \mathcal{A} \longrightarrow \mathcal{B}$ satisfies (14), (15) and (16). Then the mapping f is mixed n-Jordan *-homomorphism.

In the next example we show that Theorem 3.3 and Theorem 3.5 are fails for p = 1.

Example 3.6. Define $f : \mathbb{R} \longrightarrow \mathbb{R}$ by f(a) = Ma where $M = \frac{1+\sqrt{1+4\delta}}{2}$ and $\delta > 0$. Then for all $a, b \in \mathbb{R}$,

$$f(a+b) = f(a) + f(b).$$

Hence f is additive. Since $M^2 = M + \delta$, so we get

$$\begin{aligned} \|f(a^{2}b) - f(a)^{2}f(b)\| &= \|Ma^{2}b - (Ma)^{2}(Mb)\| \\ &= \|Ma^{2}b - (M+\delta)Ma^{2}b\| \\ &= \|-\delta Ma^{2}b - \delta a^{2}b\| \\ &= (M+1)\delta\|a\|^{2}\|b\|. \end{aligned}$$

Thus, f fulfills in Theorem 3.3 with n = 2 and p = 1. However, the mapping f is not mixed Jordan *-homomorphism unless $\delta = 0$.

A linear mapping $D : \mathcal{A} \longrightarrow \mathcal{A}$ is called a mixed *n*-Jordan derivation if for all $a, b \in \mathcal{A}$,

$$D(a^n b) = D(a^n)b + a^n D(b).$$

Now we investigate the superstability of mixed n-Jordan derivation.

Theorem 3.7. Let p > 1, δ be nonnegative real numbers and let $f : \mathcal{A} \longrightarrow \mathcal{A}$ be a mapping satisfying (14), such that

(17)
$$||f(a^{n}b) - f(a^{n})b - a^{n}f(b)|| \le \delta ||a||^{np} ||b||^{p},$$

for all $a, b \in A$. Then $f : A \longrightarrow A$ is a mixed *n*-Jordan derivation.

Proof. By the same method as in the proof of Theorem 3.3, the mapping $f : \mathcal{A} \longrightarrow \mathcal{A}$ is \mathbb{C} -linear. It follows from (17) that

$$\begin{split} \|f(a^{n}b) - f(a^{n})b - a^{n}f(b)\| = & L\|f(\frac{a^{n}}{2^{mn}}\frac{b}{2^{m}}) - f(\frac{a^{n}}{2^{mn}})\frac{b}{2^{m}} - \frac{a^{n}}{2^{mn}}f(\frac{b}{2^{m}})\| \\ \leq & L\frac{\delta}{L^{p}}\|a\|^{np}\|b\|^{p}, \end{split}$$

for all $a, b \in \mathcal{A}$, where $L = 2^{m(n+1)}$. Since p > 1, by letting $m \longrightarrow \infty$, we get

$$f(a^{n}b) = f(a^{n})b + a^{n}f(b), \quad a, b \in \mathcal{A}.$$

ted *n*-Jordan derivation.

Thus, f is a mixed n-Jordan derivation.

An analogous result of Theorem 3.7 is also holds for p < 1. Moreover, if we take n = 1 in preceding result, then we get Theorem 2.5 of [17].

Acknowledgments

The authors would like to express his sincere thanks to the referees for this paper.

References

- G. An, Characterization of n-Jordan homomorphism, Lin. Multi. Algebra, 66(4), (2018), 671-680.
- [2] R. Badora, On approximate ring homomorphisms, J. Math. Anal. Appl. 276 (2002), 589-597.
- [3] A. Bodaghi and H. İnceboz, n-Jordan homomorphisms on commutative algebras, Acta. Math. Univ. Comenianae, 87(1), (2018), 141-146.
- [4] A. Bodaghi and H. Inceboz, Extension of Zelazko's theorem to n-Jordan homomorphisms, Adv. Pure Appl. Math. 10(2) (2019), 165-170.
- [5] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949), 385-397.
- [6] A. Ebadian, A. Jabbari and N. Kanzi, n-Jordan homomorphisms and Pseudo n-Jordan homomorphisms on Banach algebras, Mediterr. J. Math. 14(241), (2017), 1–11.
- [7] M. Eshaghi Gordji, n-Jordan homomorphisms, Bull. Aust. Math. Soc. 80(1), (2009), 159-164.

On approximate mixed *n*-Jordan homomorphisms on Banach algebras 767

- [8] M. Eshaghi Gordji, N. Ghobadipour and C. Park, Jordan *-homomorphisms on C*-algebras, Operators and Matrices, 5 (2011), 541-551.
- [9] M. Eshaghi Gordji, T. Karimi, and S. K. Gharetapeh, Approximately n-Jordan Homomorphisms on Banach algebras, J. Ineq. Appli. 2009, Article ID 870843, (2009), 1-8.
- [10] Z. Gajda, On stability of additive mappings, Inter. J. Math. Math. Sci. 14 (1991), 431-434.
- [11] I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1956), 331–341.
- [12] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224.
- [13] Y. H. Lee, Stability of n-Jordan Homomorphisms from a Normed Algebra to a Banach Algebra, Abst. Appli. Anal. 2013, Article ID 691025, (2013), 1-5.
- [14] T. Miura, S. E. Takahasi, and G. Hirasawa, Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras, J. Ineq. Appl. 2005 (2005), 435-441.
- [15] M. Neghabi, A. Bodaghi and A. Zivari-Kazempour, Characterization of mixed n-Jordan homomorphisms and pseudo n-Jordan homomorphisms, Filomat, to appear.
- [16] C. Park, Homomorphisms between Poisson JC^{*}-algebras, Bull. Brazilian Math. Soc. 36 (2005), 79-97.
- [17] C. Park and A. Nejati, Homomorphisms and derivation on C^{*}-algebras, Abst. Appli. Anal. 2007 Article ID 80630, (2007), 1-12.
- [18] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
- [19] Th. M. Rassias, The stability of mappings and related topics, in Report on the 27th ISFE, Aequationes Math. 39 (1990), 292-293.
- [20] S. M. Ulam, Problems in Modern Mathematics, Chap. VI, Wiley, New York, 1960.
- [21] W. Zelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math. 30 (1968), 83-85.
- [22] A. Zivari-Kazempour, A characterization of 3-Jordan homomorphism on Banach algebras, Bull. Aust. Math. Soc. 93(2), (2016), 301-306.

Abbas Zivari-Kazempour Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran E-mail: zivari@abru.ac.ir, zivari6526@gmail.com

A. Zivari-Kazempour and M. Valaei

Mohammad Valaei Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran E-mail: Mohammad.valaei@abru.ac.ir