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INEQUALITIES FOR THE ARGUMENTS LYING ON

LINEAR AND CURVED PATH

K. M. Nagaraja, Serkan Araci∗, V. Lokesha,
R. Sampathkumar, and T. Vimala

Abstract. The mathematical proof for establishing some new in-
equalities involving arithmetic, geometric, harmonic means for the
arguments lying on the paths of triangular wave function (linear)
and new parabolic function (curved) over the interval (0, 1) are dis-
cussed. The results representing an extension as well as strength-
ening of Ky Fan Type inequalities.

1. Introduction

The Hand book of Means and their Inequalities, by Bullen [1], gave
the tremendous work on Mathematical means and the corresponding
inequalities involving huge number of means. The authors in [3, 4] dis-
cussed about the relations between the well known means and series.
The generalization of the means are discussed in [5, 17]. Relevant to
this paper the authors in [11, 18] established the good number of in-
equalities and double inequalities. In [8] authors introduced new ho-
mogeneous function, as an application inequalities involving means are
obtained. The set of arbitrary non-negative real numbers yi ∈ (0, 12 ] and

y′i = (1 − yi) ∈ [12 , 1) is represented as a function in the form given by
[1].

f(y) =

{
y, 0 < y ≤ 1

2

(1− y), 1
2 ≤ y < 1

The following are the few definitions of means extracted from the above
survey papers. For given n arbitrary non-negative real numbers y1, y2, · · ·
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, yn ∈ (0, 12 ], the standard notations for the un-weighted arithmetic, geo-
metric and harmonic means are represented by An, Gn and Hn are
respectively given by

An =
1

n

n∑
i=1

yi, Gn =
n∏

i=1

n
√
yi and Hn =

n
n∑

i=1

1
yi

Also, the arithmetic, geometric and harmonic means of the set of el-
ements 1 − y1, 1 − y2, · · · , 1 − yn represented by A′n, G′n and H ′n are
respectively given by

A′n =
1

n

n∑
i=1

(1− yi), G′n =

n∏
i=1

n
√

1− yi and H ′n =
n

n∑
i=1

1
(1−yi)

Ky Fan initiated the popular inequalities involving them and later on
strengthened by several authors namely Rooin et al. and Sandoor et al.
[16, 18]. The inequalities obtained in this paper have numerous applica-
tions in the study of porous medium problems [2]. This work motivate
us to develop two double inequalities in this paper.

For two positive arguments e and f , the above means are given by;

A =
e + f

2
, and A′ =

(1− e) + (1− f)

2

G =
√

ef and G′ =
√

(1− f)(1− e)

H =
2ef

e + f
and H ′ =

2(1− f)(1− e)

(1− e) + (1− f)

The motivation of the work carried out by the eminent researchers and
discussion with experts, results in study of a function which is symmetric
about the point 1

2 and is similar to parabolic curve in nature given below:

f∗(y) =

{
2y2, 0 < y ≤ 1

2

2(1− y)2, 1
2 ≤ y < 1

The functions f(y) and f∗(y) are graphically represented as shown be-
low:
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Figure 1. Graph of f(y) and f∗(y) over [0,1]

The corresponding arithmetic, geometric and harmonic means A∗, G∗

and H∗ are considered for the arguments lying on the curved path of
f∗(y) and some important inequality chains involving them are estab-
lished.

A∗n =
1

n

n∑
i=1

2e2i and (A∗n)′ =
1

n

n∑
i=1

2(1− ei)
2

G∗n =

n∏
i=1

n

√
2n(e2i ) and (G∗n)′ =

n∏
i=1

n
√

2n(1− ei)2

H∗n =
n

n∑
i=1

1
2e2i

and (H∗n)′ =
n

n∑
i=1

1
2(1−ei)2

For two positive arguments e and f , above said means takes the form;

A∗ =
2e2 + 2f2

2
and (A∗)′ =

2(1− e)2 + 2(1− f)2

2

G∗ =
√

[2e2][2f2] and (G∗)′ =
√

[2(1− e)2][2(1− f)2]

H∗ =
4e2f2

e2 + f2
and (H∗)′ =

4(1− e)2(1− f)2

(1− e)2 + (1− f)2
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2. Results

In this section, some inequalities involving arithmetic, geometric and
harmonic means for the arguments lying on linear and curved path are
established.

Theorem 2.1. For e, f ∈ (0, 12 ], the following mean inequality chain
holds;

(G∗)′ > (H∗)′ > G∗ > H∗

Proof. The proof is discussed in following three cases.
Case[i ]: The geometric mean (G∗)′ is greater than harmonic mean
(H∗)′,

where (G∗)′ = 2(1−f)(1−e) and (H∗)′ =
4(1− f)2(1− e)2

(1− f)2 + (1− e)2

Consider for two positive arguments,

(G∗)′ − (H∗)′ = 2(1− f)(1− e)− 4(1− f)2(1− e)2

(1− f)2 + (1− e)2

= 2(1− f)(1− e)

[
1− 2(1− f)(1− e)

(1− f)2 + (1− e)2

]
= 2(1−f)(1−e)

[
(1− f)2 + (1− e)2 − 2(1− f)(1− e)

(1− f)2 + (1− e)2

]
Now we consider[

(1− f)2 + (1− e)2 − 2(1− e)(1− f)

(1− f)2 + (1− e)2

]
= 1− 2e + e2 + f2 + 1− 2f − 2 + 2f + 2e− 2ef = e2 + f2 − 2ef

= 4(A2 −G2) > 0.

Also, (1− e) > 0 and (1− f) > 0, then,

(G∗)′ − (H∗)′ = 2(1− e)(1− f)

[
(1−f)2+(1−e)2−2(1−e)(1−f)

(1− f)2 + (1− e)2

]
> 0

Hence, (G∗)′ − (H∗)′ > 0, this proves that (G∗)′ > (H∗)′.
Case[ii ]: To prove (H∗)′ > G∗,

where (H∗)′ = 4(1−e)2(1−f)2
(1−e)2+(1−f)2 and G∗ = 2ef.

Consider (H∗)′−G∗ =
4(1− f)2(1− e)2

(1− f)2 + (1− e)2
−2ef

= 2[2(1− e)2(1− f)2 − ef [1 + e2 − 2e + 1 + f2 − 2f ]]
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= 2 + 2(f + e)2 + 2ef − 2ef(f + e)− 4(f + e) + 2e2f2 − ef(e2 + f2)

= 2+2(f+e)2+2ef−2ef(f+e)−4(f+e)+2e2f2−ef(f+e)2+2e2f2

= 2ef(1 − f − e) + 2(f + e)2(2 − fe) + 2(1 − 2e − 2f) + 4e2f2 > 0.
Since, 2ef(1−e−f) > 0 and (e+f)2(2−ef) = (e+f)2(2−G2) > 0.

We have
4(1− f)2(1− e)2

(1− f)2 + (1− e)2
−2ef > 0.

Hence, (H∗)′ −G∗ > 0, this proves that (H∗)′ > G∗.
Case[iii ]: In order to prove G∗ > H∗,

where G∗ =
√

(2e2)(2f2) and H∗ = 4e2f2

e2+f2 .

Consider

G∗−H∗ =
√

(2e2)(2f2)− 4e2f2

e2 + f2
= 2ef− 4e2f2

e2 + f2
= 2ef

[
1− 2ef

e2 + f2

]

=
2ef

e2 + f2

[
(e + f)2 − 4ef

]
=

8ef

e2 + f2

[
A2 −G2

]
> 0.

Then G∗ −H∗ > 0, this proves that G∗ > H∗.
Thus the Theorem 2.1 completes.

Theorem 2.2. For e, f ∈ (0, 12 ], the mean inequality G′ > H ′ > G∗

holds.

Proof. The proof is discussed in following two cases.
Case[i ]: The geometric mean (G′) is greater than harmonic mean (H ′),

where G′ =
√

(e− 1)(f − 1) and H ′ = 2(f−1)(e−1)
2−f−e .

Consider G′ −H ′ =
√

(f − 1)(1− e)− 2(1−e)(1−f)
2−f−e

With assumption that
√

(1− f)(1− e) > 2(1−f)(1−e)
2−f−e

Then (1− e)(1− f) > 4(1−f)2(1−e)2
(2−f−e)2

Which is equivalent to (1− f)(1− e)
[
(2−f−e)2−4(1−e)(1−f)

(2−f−e)2

]
> 0

Now consider
(2−f−e)2−4(1−e)(1−f) = 4+e2−4e+f2−4f+2ef−4+4e+4f−4ef

= e2 + f2 − 2ef = (e + f)2 − 4ef

= 4(A2 −G2) > 0
This proves that G′ > H ′.
Case[ii ]: To prove H ′ > G∗,

where H ′ = 2(1−e)(1−f)
2−e−f and G∗ =

√
(2e2)(2f2)

Consider H ′ −G∗ = 2(1−e)(1−f)
2−f−e −

√
(2e2)(2f2)
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With assumption that (1−e)(1−f)2
2−e−f >

√
(2e2)(2f2)

Equivalently 2(1−f)(1−e)
2−f−e > 2ef and 1− f − e + ef > ef(2− e− f)

=⇒ 1 + ef − e− f − 2ef + e2f + ef2 > 0
=⇒ 1− (e + f)− ef + ef(e + f) > 0
=⇒ 1− ef + (ef − 1)(e + f) > 0
=⇒ (1− ef)[1− e− f ] > 0
=⇒ (1− ef) > 0 and (1− e− f) > 0

Therefore our assumption is true and hence H ′ − G∗ > 0 this proves
that H ′ > G∗.
Thus the Theorem 2.2 completes.

Theorem 2.3. For e, f ∈ (0, 12 ], the following mean inequality chain
holds;

A′ > H ′ > H > H∗

Proof. The proof is discussed in following three cases.
Case[i ]: To prove A′ > H ′, where A′ = 2−e−f

2 and H = 2ef
e+f .

Consider A′ −H ′ = 2−f−e
2 − 2ef

e+f = (2−e−f)(f+e)−4ef
2(f+e)

= 2e+2f−e2−ef−ef−e2−4ef
2(f+e) = 2(e+f)−(f+e)2−4ef

2(e+f)

= (e+f)−(e+f)2+e+f−4ef
2(e+f) = (1−e−f)(e+f)+(2A−4G2]

2f+e .

Since 0 < 1− f − e and 2(A− 2G2) > 0

We have A′ −H ′ = 2−f−e
2 − 2ef

f+e > 0.

Hence A′ −H ′ > 0, this proves that A′ > H ′.

Case[ii]: To prove H ′ > H, where H ′ = 2(1−e)(1−f)
2−e−f and H = 2ef

e+f .

Consider H ′ −H = 2(1−e)(1−f)
2−f−e − 2ef

f+e = 2
[
(1−e)(e+f)(1−f)−ef(2−f−e)

(2−e−f)(e+f)

]
.

Now we consider (1− e)(1− f)(e + f)− ef(2− e− f)
= f+e−e2−ef−f2−ef+e2f−2ef+ef2+e2f+f2e
= 2e2f + 2ef2 − 4ef + e− e2 + f − f2

= 2ef(f + e) + e + f − 2ef − (e + f)2

= [2ef − (e + f)] (e + f) + (e + f − 2ef)
= [(f + e− 2ef)(1− f − e)]
= 2(A−G2)(1− 2A) > 0

Then H ′ −H = 2(1−e)(1−f)
2−e−f − 2ef

e+f > 0.

Hence H ′ −H > 0, this proves that H ′ > H.

Case[iii]: To prove H > H∗, where H = 2ef
e+f and H ′ = 4e2f2

e2+f2 .

Consider H −H∗ = 2ef
f+e −

4e2f2

f2+e2
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= 2fe4A
2−2G2−4AG2

(f+e)(f2+e2)

= 2ef 2(A2−G2)+2(A2−2G2)
(e+f)(e2+f2)

.

Since (G2 < A2) and (A2 − 2G2) > 0
We have H −H∗ > 0, this proves that H > H∗.
Thus the Theorem 2.3 completes.

Theorem 2.4. For e, f ∈ (0, 12 ], the mean inequality G∗′ > H > G∗

holds.

Proof. The proof is discussed in following two cases.
Case[i ]: The geometric mean (G∗′) is greater than harmonic mean (H),

where G∗′ = 2(1− e)(1− f) and H = 2fe
f+e .

Consider G∗′ −H = 2(1− f)(1− e)− 2ef
f+e

=
2(1− e)(1− f)(f + e)− 2ef

f + e

= 2

[
f + e− e2 − 4fe− f2 + 2e2f + 2ef2

(f + e)

]
= (f + e)− (f + e)2 − 2ef + 2ef(f + e)
= (1− e− f)(f + e− 2ef)

Since, (f + e− 2ef) = 2A− 2G2 = 2(A−G2) > 0 and (1− e− f) > 0.

Hence G∗′ −H = 2(1− e)(1− f)− 2ef
e+f > 0.

Then, G∗′ −H > 0, this proves that G∗′ > H.
Case[ii]: To prove H > G∗, where H = 2ef

e+f and G∗ = 2ef.

Consider H −G∗ = 2ef
e+f − 2ef = 2ef

e+f [1− e− f ]

Since, 1− e− f > 0.
Then, H −G∗ = 2ef

e+f − 2ef > 0.

H −G∗, this proves that H > G∗.
Thus the Theorem 2.4 completes.

Conclusion. New inequality chains involving arithmetic, geometric
and harmonic means are established by considering the arguments lying
in the triangular wave function f(y) and new parabolic function f∗(y)
in (0, 1). Further investigation to be carried out on more parabolic func-
tions based on their nature and verifying the properties of means.
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