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PERIODICITY AND POSITIVITY IN NEUTRAL
NONLINEAR LEVIN-NOHEL INTEGRO-DIFFERENTIAL

EQUATIONS

Karima Bessioud, Abdelouaheb Ardjouni∗,
and Ahcene Djoudi

Abstract. Our paper deals with the following neutral nonlinear
Levin-Nohel integro-differential with variable delay

d

dt
x (t) +

∫ t

t−τ(t)

a (t, s)x (s) ds+
d

dt
g (t, x (t− τ (t))) = 0.

By using Krasnoselskii’s fixed point theorem we obtain the existence
of periodic and positive periodic solutions and by contraction map-
ping principle we obtain the existence of a unique periodic solution.
An example is given to illustrate this work.

1. Introduction

Delay differential equations arise from a variety of applications in-
cluding in various fields of science and engineering such as applied sci-
ences, practical problems concerning mechanics, the engineering tech-
nique fields, economy, control systems, physics, chemistry, medicine, bi-
ology, atomic energy, information theory, harmonic oscillator, nonlinear
oscillations, conservative systems, stability and instability of geodesic on
Riemannian manifolds, dynamics in Hamiltonian systems, etc. In par-
ticular, problems concerning qualitative analysis of linear and nonlinear
delay differential equations have received the attention of many authors
(see [1]–[31], [33]–[40] and the references therein).

Received February 21, 2020. Revised October 1, 2020. Accepted October 1, 2020.
2010 Mathematics Subject Classification. 34K20, 45J05, 45D05.
Key words and phrases. Fixed points, periodicity, positivity, Levin-Nohel integro-

differential equations, functional delay.
*Corresponding author



668 K. Bessioud, A. Ardjouni, and A. Djoudi

In this paper, we consider the following neutral nonlinear Levin-Nohel
integro-differential equation with variable delay

(1) d

dt
x (t) +

∫ t

t−τ(t)
a (t, s)x (s) ds+

d

dt
g (t, x (t− τ (t))) = 0,

where a, τ and g are continuous functions with τ (t) > 0. Equation (1)
has a long history and the simpler form of it was considered in 1928 by
Volterra with a biological application in mind (see [12, 38]). In the case
g (t, 0) = 0, the authors in [13] used the contraction mapping principle to
show the asymptotic stability of the zero solution for (1). The purpose
of this paper is to transform (1) into an integral equation and then use
the Krasnoselskii’s fixed point theorem to show the existence of periodic
and positive periodic solutions. The obtained integral equation is the
sum of two mappings; one is a contraction and the other is compact.
Also by employing the contraction mapping principle, the existence of a
unique periodic solution has been established. An example is also given
to illustrate this work.

2. Existence and uniqueness of periodic solutions

For T > 0 let PT be the set of all continuous scalar functions x,
periodic in t of period T . Then (PT , ∥.∥) is a Banach space with the
supremum norm

∥x∥ = sup
t∈R

|x (t)| = sup
t∈[0,T ]

|x (t)| .

Since we are searching for the existence of periodic solutions for (1), it
is natural to assume that
(2) a (t+ T, s+ T ) = a (t, s) , τ (t+ T ) = τ (t) ,

with τ being scalar, continuous and τ (t) ≥ τ∗ > 0. Also, we assume

(3)
∫ T

0
A (z) dz > 0, A (t) =

∫ t

t−τ(t)
a (t, s) ds.

The function g (t, x) is periodic in t of period T , it is also globally Lips-
chitz continuous in x. That is
(4) g (t+ T, x) = g (t, x) ,

and there is positive constant E such that
(5) |g (t, x)− g (t, y)| ≤ E ∥x− y∥ .
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The proof of the following lemma is close to the proof of Lemma 2.2
given in [13].

Lemma 2.1. Suppose (2)–(4) hold. If x ∈ PT , then x is a solution
of equation (1) if and only if

x (t) = −g (t, x (t− τ (t)))−
(
1− e−

∫ t
t−T A(z)dz

)−1

×
∫ t

t−T
[Lx (s)−A (s) g (s, x (s− τ (s)))] e−

∫ t
s A(z)dzds,(6)

where

Lx (t) =

∫ t

t−τ(t)
a (t, s)

∫ t

s

(∫ u

u−τ(u)
a (u, ν)x (ν) dν

)
duds

+

∫ t

t−τ(t)
a (t, s) (g (t, x (t− τ (t)))− g (s, x (s− τ (s)))) ds.(7)

Proof. Obviously, we have

x (s) = x (t)−
∫ t

s

∂

∂u
x (u) du.

Inserting these relation into (1), we get
d

dt
x (t) +

∫ t

t−τ(t)
a (t, s)

(
x (t)−

∫ t

s

∂

∂u
x (u) du

)
ds

+
d

dt
g (t, x (t− τ (t))) = 0,

or equivalently
d

dt
x (t) + x (t)

∫ t

t−τ(t)
a (t, s) ds−

∫ t

t−τ(t)
a (t, s)

(∫ t

s

∂

∂u
x (u) du

)
ds

+
d

dt
g (t, x (t− τ (t))) = 0.

After substituting ∂x
∂u from (1), we obtain

d

dt
x (t) + x (t)

∫ t

t−τ(t)
a (t, s) ds+

d

dt
g (t, x (t− τ (t)))

+

∫ t

t−τ(t)
a (t, s)

(∫ t

s

(∫ u

u−τ(u)
a (u, ν)x (ν) dν

+
∂

∂u
g (u, x (u− τ (u)))

)
du

)
ds = 0.(8)
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By performing the integration, we have
(9)∫ t

s

∂

∂u
g (u, x (u− τ (u))) du = g (t, x (t− τ (t)))− g (s, x (s− τ (s))) .

Substituting (9) into (8), we have
d

dt
x (t) +A (t)x (t) + Lx (t) +

d

dt
g (t, x (t− τ (t))) = 0,

where A and Lx are given by (3) and (7), respectively. We rewrite this
equation as

d

dt
{x (t) + g (t, x (t− τ (t)))}

= −A (t) (x (t) + g (t, x (t− τ (t))))

+A (t) g (t, x (t− τ (t)))− Lx (t) .(10)

Multiply both sides of (10) with e
∫ t
0 A(z)dz and then integrate from t−T

to t to obtain∫ t

t−T

d

ds

[
(x (s) + g (s, x (s− τ (s)))) e

∫ s
0 A(z)dz

]
ds

= −
∫ t

t−T
[Lx (s)−A (s) g (s, x (s− τ (s)))] e

∫ s
0 A(z)dzds.

As a consequence, we arrive at

(x (t) + g (t, x (t− τ (t)))) e
∫ t
0 A(z)dz

− (x (t− T ) + g (t− T, x (t− T − τ (t− T )))) e
∫ t−T
0 A(z)dz

= −
∫ t

t−T
[Lx (s)−A (s) g (s, x (s− τ (s)))] e

∫ s
0 A(z)dzds.

Dividing both sides of the above equation by e
∫ t
0 A(z)dz and the fact that

x (t− T ) = x (t), we obtain
x (t) + g (t, x (t− τ (t)))

= −
(
1− e−

∫ t
t−T A(z)dz

)−1

×
∫ t

t−T
[Lx (s)−A (s) g (s, x (s− τ (s)))] e−

∫ t
s A(z)dzds.

Since each step is reversible, the converse follows easily. This completes
the proof.
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Define a mapping H by

(Hφ) (t) = −g (t, φ (t− τ (t)))−
(
1− e−

∫ t
t−T A(z)dz

)−1

×
∫ t

t−T
[Lφ (s)−A (s) g (s, φ (s− τ (s)))] e−

∫ t
s A(z)dzds.(11)

Since a (t+ T, s+ T ) = a (t, s) then A is T -periodic. It is clear from
(11) that H : PT → PT by the way it was constructed in Lemma 2.1.

Next we state Krasnoselskii’s fixed point theorem which enables us to
prove the existence of a periodic solution. For the proof of Krasnoselskii’s
fixed point theorem we refer the reader to [32].

Theorem 2.2 (Krasnoselskii). Let M be a closed convex nonempty
subset of a Banach space (B, ∥.∥). Suppose that C and B map M into
B such that

(i) x, y ∈M , implies Cx+By ∈M ,
(ii) C is continuous and CM is contained in a compact set,
(iii) B is a contraction mapping.

Then there exists z ∈M with z = Cz +Bz.

We note that to apply the above theorem we need to construct two
mappings; one is contraction and the other is compact. Therefore, we
express (11) as

(Hφ) (t) = (Bφ) (t) + (Cφ) (t) ,

where C,B : PT → PT are given by
(12) (Bφ) (t) = −g (t, φ (t− τ (t))) ,

and

(Cφ) (t) = −
(
1− e−

∫ t
t−T A(z)dz

)−1

×
∫ t

t−T
[Lφ (s)−A (s) g (s, φ (s− τ (s)))] e−

∫ t
s A(z)dzds.(13)

To simplify notations, we introduce the following constants

η =
(
1− e−

∫ t
t−T A(z)dz

)−1
, γ = sup

t∈[0,T ]

(
sup

s∈[t−T,t]
e−

∫ t
s A(z)dz

)
,

ρ = sup
t∈[0,T ]

(
sup

s∈[t−T,t]

(∫ s

s−τ(s)
|a (s, w)| dw

))
,

δ = sup
t∈[0,T ]

(
sup

s∈[t−T,t]

(
sup

w∈[t−T,t]

∫ s

w

(∫ u

u−τ(u)
|a (u, ν)| dν

)
du

))
.(14)
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Lemma 2.3. Let C be given in (13). Suppose that (2)–(4) hold.
Then C : PT → PT is continuous and the image of C contained in a
compact set.

Proof. To see that C is continuous, we let φ,ψ ∈ PT . Given ϵ > 0,
take β = ϵ

N with N = ηγTρ (δ + 3E) where E is given by (5). Now, for
∥φ− ψ∥ < β, we obtain

∥Cφ− Cψ∥ ≤ ηγ

∫ t

t−T
[ρδ ∥φ− ψ∥+ 3ρE ∥φ− ψ∥] ds

≤ N ∥φ− ψ∥ < ϵ.

This proves that C is continuous. To show that the image of C is
contained in a compact set, we consider D = {φ ∈ PT : ∥φ∥ ≤ R}, where
R is a fixed positive constant. Let φ ∈ D. Observe that in view of (5)
we have

|g (t, x)| = |g (t, x)− g (t, 0) + g (t, 0)|
≤ |g (t, x)− g (t, 0)|+ |g (t, 0)|
≤ E ∥x∥+ α,

where α = sup
t∈[0,T ]

|g (t, 0)|. Consequently

|(Cφ) (t)| ≤ ηγ

∫ t

t−T
[ρ (δ + 2 (ER+ α)) + ρ (ER+ α)] ds

≤ ηγT [ρ (δ + 3 (ER+ α))] = L.

Next we calculate (Cφ)′ (t) and show that C (D) is uniformly bounded.
By making use of (2)–(4) we obtain by taking the derivative in (13) that

(Cφ)′ (t) =
(
1− e−

∫ t
t−T A(z)dz

)−1

×A (t)

∫ t

t−T
[Lφ (s)−A (s) g (s, φ (s− τ (s)))] e−

∫ t
s A(z)dzds

−
(
1− e−

∫ t
t−T A(z)dz

)−1
{(Lφ (t)−A (t) g (t, φ (t− τ (t))))

(Lφ (t− T )−A (t− T )

− ×g (t− T, φ (t− T − τ (t− T )))) e−
∫ t
t−T A(z)dz

}
= −A (t) (Cφ) (t)− Lφ (t) +A (t) g (t, φ (t− τ (t))) .

Thus, the above expression yields
∥∥(Cφ)′∥∥ ≤ F , for some positive con-

stant F . Thus C (D) is uniformly bounded and equicontinuous. Hence
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by Ascoli-Arzela’s theorem C (D) is relatively compact. Then, C (D) is
contained in a compact set.

Lemma 2.4. If B is given by (12) with E < 1, then B : PT → PT is
a contraction.

Proof. Let B be defined by (12). Then for φ,ψ ∈ PT we have
∥Bφ−Bψ∥ = sup

t∈[0,T ]
|(Bφ) (t)− (Bψ) (t)|

≤ E sup
t∈[0,T ]

|φ (t− τ (t))− ψ (t− τ (t))|

≤ E ∥φ− ψ∥ .
Hence B defines a contraction.

Our first result is based on Krasnoselskii’s fixed point theorem.

Theorem 2.5. Suppose the hypothesis of Lemma 2.4. Let α =
sup

t∈[0,T ]
|g (t, 0)|. Suppose (2)–(5) hold. Let J be a positive constant sat-

isfying the inequality
(15) EJ + α+ ηγT (ρ (δJ + 3 (EJ + α))) ≤ J.

Let M = {φ ∈ PT : ∥φ∥ ≤ J}. Then equation (1) has a solution in M .

Proof. By Lemma 2.3, C : M → PT is continuous and C (M) is
contained in a compact set. Also, from Lemma 2.4, the mapping B :
M → PT is a contraction. Next, we show that if φ,ψ ∈ M , we have
∥Cφ+Bψ∥ ≤ J . Let φ,ψ ∈M with ∥φ∥ , ∥ψ∥ ≤ J . Then
∥Cφ+Bψ∥

≤ E ∥ψ∥+ α+ ηγ

∫ t

t−T
[ρ (δ ∥φ∥+ 2 (E ∥φ∥+ α)) + ρ (E ∥φ∥+ α)] ds

≤ EJ + α+ ηγT (ρ (δJ + 3 (EJ + α))) ≤ J.

We now see that all the conditions of Krasnoselskii’s theorem are sat-
isfied. Thus there exists a fixed point z in M such that z = Cz + Bz.
By Lemma 2.1, this fixed point is a solution of (1). Hence (1) has a
T -periodic solution.

Our second result is based on Banach’s fixed point theorem.

Theorem 2.6. Suppose (2)–(5) hold. If
(16) E + ηγTρ (δ + 3E) < 1,

then equation (1) has a unique T -periodic solution.
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Proof. Let the mapping H be given by (11). For φ,ψ ∈ PT , in view
of (11), we have

∥Hφ−Hψ∥ ≤ (E + ηγTρ (δ + 3E)) ∥φ− ψ∥ .

This completes the proof by invoking the contraction mapping principle.

Remark 2.7. The condition (16) implies the condition (15).

Corollary 2.8. Suppose (2)–(4) hold and let α be the constant de-
fined in Theorem 2.5. Let J be a positive constant and define M =
{φ ∈ PT : ∥φ∥ ≤ J}. Suppose there is positive constant E∗ so that for
x, y ∈M we have

|g (t, x)− g (t, y)| ≤ E∗ ∥x− y∥ .

If E∗ < 1 and ∥Hφ∥ ≤ J for φ ∈M , then (1) has a T -periodic solution
in M . Moreover, if

E∗ + ηγTρ (δ + 3E∗) < 1,

then (1) has a unique T -periodic solution in M .

Proof. Let M = {φ ∈ PT : ∥φ∥ ≤ J}. Let the mapping H be given
by (11). Then, the results follow immediately from Theorem 2.5 and
Theorem 2.6

Example 2.9. For small positive ϵ1 and ϵ2 we consider the nonlinear
neutral integro-differential equation with variable delay

d

dt
x (t) + ϵ1

∫ t

t− π
ω

(1 + cosω (t− s))x (s) ds

+ ϵ2
d

dt

(
cos (ωt)x3

(
t− π

ω

))
= 0,(17)

where ω is a positive constant. So, we have a (t, s) = ϵ1 (1 + cosω (t− s)),
τ (t) = π

ω , g (t, x (t− τ (t))) = ϵ2
(
cos (ωt)x3

(
t− π

ω

)
+ 1
)
. Define M ={

φ ∈ P 2π
ω

: ∥φ∥ ≤ J
}

, where J is a positive constant. For φ ∈ M , we
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have
|(Hφ) (t)|

=

∣∣∣∣−g (t, φ (t− τ (t)))−
(
1− e−

∫ t
t−T A(z)dz

)−1

×
∫ t

t−T
[Lφ (s)−A (s) g (s, φ (s− τ (s)))] e−

∫ t
s A(z)dzds

∣∣∣∣
≤ ϵ2J

3 + ϵ2 +

(
1− e

−2ϵ1π
2

ω2

)−1 4π2

ω2
ϵ1

(
4ϵ1π

2

ω2
J + 3ϵ2J

3 + 3ϵ2

)
.

Thus, the inequality

(18) ϵ2J
3 + ϵ2 +

(
1− e

−2π2ϵ1
ω2

)−1 4π2

ω2
ϵ1

(
4ϵ1π

2

ω2
J + 3ϵ2J

3 + 3ϵ2

)
≤ J,

which is satisfied for small ω, ϵ1 and ϵ2, implies ∥Hφ∥ ≤ J . Hence, (17)
has a 2π

ω -periodic solution, by Corollary 2.8.
For the uniqueness of the solution we let φ,ψ ∈M . From (17) we see

that

η =

(
1− e

−2π2ϵ1
ω2

)−1

, ρ =
2π

ω
ϵ1, γ ≤ 1.

Also α = ϵ2, E = 3ϵ2J
2, where J is given by (18). If

3ϵ2J
2 +

4π2ϵ1
ω2

(
1− e

−2π2ϵ1
ω2

)−1 [4ϵ1π2
ω2

+ 9ϵ2J
2

]
< 1,

is satisfied for small ϵ1 and ϵ2, then (17) has a unique 2π
ω -periodic solu-

tion, by Corollary 2.8.

3. Existence of positive periodic solutions

For some non-negative constant L and a positive constant K, we
define the set

M = {φ ∈ PT : L ≤ φ ≤ K} ,
which is a closed convex and bounded subset of the Banach space PT .

In this section we obtain the existence of a positive periodic solution
of (1) by considering the two cases; g (t, x) ≥ 0 and g (t, x) ≤ 0 for all
t ∈ R, x ∈ M. To simplify notation, we let

θ = max
t∈[0,T ]

(
max

s∈[t−T,t]
e−

∫ t
s A(z)dz

)
, σ = min

t∈[0,T ]

(
min

s∈[t−T,t]
e−

∫ t
s A(z)dz

)
.
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In the case g (t, x) ≤ 0, we assume that there exist a non-negative
constant k1 and a positive constant k2 such that
(19) k1x ≤ −g (t, x) ≤ k2x, for all t ∈ [0, T ], x ∈ M,

(20) k2 < 1,

and for all t ∈ [0, T ], x ∈ M

(21) L (1− k1)

ησT
≤ −Lx (t) +A (t) g (t, x) ≤ K (1− k2)

ηθT
.

Theorem 3.1. Suppose (2)–(5) and (19)–(21) hold. Then equation
(1) has a positive T -periodic solution x in the subset M.

Proof. By Lemma 2.1 x is a solution of (1) if
x = Cx+Bx,

where C and B are given by (13), (12) respectively. By Lemma 2.3,
C : M → PT is continuous and compact. Also, from Lemma 2.4, the
mapping B : M → PT is a contraction. We just need to show that
condition (i) of Theorem 2.2 is satisfied. Toward this, let φ,ψ ∈ M,
then

(Bψ) (t) + (Cφ) (t)

= −g (t, ψ (t− τ (t)))

− η

∫ t

t−T
[Lφ (s)−A (s) g (s, φ (s− τ (s)))] e−

∫ t
s A(z)dzds

≤ k2K + ηθT
K (1− k2)

ηθT
≤ K.

On the other hand,
(Bψ) (t) + (Cφ) (t)

= −g (t, ψ (t− τ (t)))

− η

∫ t

t−T
[Lφ (s)−A (s) g (s, φ (s− τ (s)))] e−

∫ t
s A(z)dzds

≥ k1L+ ησT
L (1− k1)

ησT
≥ L.

Clearly, all the hypotheses of the Krasnoselskii theorem are satisfied.
Thus there exists a fixed point x ∈ M such that x = Bx + Cx. By
Lemma 2.1 this fixed point is a solution of (1) and the proof is complete.
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In the case g (t, x) ≥ 0, we substitute conditions (19)-(21) with the
following conditions respectively. We assume that there exist a negative
constant k3 and a non-positive constant k4 such that
(22) k3x ≤ −g (t, x) ≤ k4x, for all t ∈ [0, T ], x ∈ M,

(23) −k3 < 1,

and for all t ∈ [0, T ], x ∈ M

(24) L− k3K

ησT
≤ −Lx (t) +A (t) g (t, x) ≤ K − k4L

ηθT
.

Theorem 3.2. Suppose (2)–(5) and (22)–(24) hold. Then equation
(1) has a positive T -periodic solution x in the subset M.

The proof follows along the lines of Theorem 3.1, and hence we omit
it.
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