PERIODICITY AND POSITIVITY IN NEUTRAL NONLINEAR LEVIN-NOHEL INTEGRO-DIFFERENTIAL EQUATIONS

Karima Bessioud, Abdelouaheb Ardjouni*, and Ahcene Djoudi

Abstract

Our paper deals with the following neutral nonlinear Levin-Nohel integro-differential with variable delay $$
\frac{d}{d t} x(t)+\int_{t-\tau(t)}^{t} a(t, s) x(s) d s+\frac{d}{d t} g(t, x(t-\tau(t)))=0 .
$$

By using Krasnoselskii's fixed point theorem we obtain the existence of periodic and positive periodic solutions and by contraction mapping principle we obtain the existence of a unique periodic solution. An example is given to illustrate this work.

1. Introduction

Delay differential equations arise from a variety of applications including in various fields of science and engineering such as applied sciences, practical problems concerning mechanics, the engineering technique fields, economy, control systems, physics, chemistry, medicine, biology, atomic energy, information theory, harmonic oscillator, nonlinear oscillations, conservative systems, stability and instability of geodesic on Riemannian manifolds, dynamics in Hamiltonian systems, etc. In particular, problems concerning qualitative analysis of linear and nonlinear delay differential equations have received the attention of many authors (see [1]-[31], [33]-[40] and the references therein).

[^0]In this paper, we consider the following neutral nonlinear Levin-Nohel integro-differential equation with variable delay

$$
\begin{equation*}
\frac{d}{d t} x(t)+\int_{t-\tau(t)}^{t} a(t, s) x(s) d s+\frac{d}{d t} g(t, x(t-\tau(t)))=0 \tag{1}
\end{equation*}
$$

where a, τ and g are continuous functions with $\tau(t)>0$. Equation (1) has a long history and the simpler form of it was considered in 1928 by Volterra with a biological application in mind (see [12, 38]). In the case $g(t, 0)=0$, the authors in [13] used the contraction mapping principle to show the asymptotic stability of the zero solution for (1). The purpose of this paper is to transform (1) into an integral equation and then use the Krasnoselskii's fixed point theorem to show the existence of periodic and positive periodic solutions. The obtained integral equation is the sum of two mappings; one is a contraction and the other is compact. Also by employing the contraction mapping principle, the existence of a unique periodic solution has been established. An example is also given to illustrate this work.

2. Existence and uniqueness of periodic solutions

For $T>0$ let P_{T} be the set of all continuous scalar functions x, periodic in t of period T. Then $\left(P_{T},\|\cdot\|\right)$ is a Banach space with the supremum norm

$$
\|x\|=\sup _{t \in \mathbb{R}}|x(t)|=\sup _{t \in[0, T]}|x(t)|
$$

Since we are searching for the existence of periodic solutions for (1), it is natural to assume that

$$
\begin{equation*}
a(t+T, s+T)=a(t, s), \tau(t+T)=\tau(t) \tag{2}
\end{equation*}
$$

with τ being scalar, continuous and $\tau(t) \geq \tau^{*}>0$. Also, we assume

$$
\begin{equation*}
\int_{0}^{T} A(z) d z>0, A(t)=\int_{t-\tau(t)}^{t} a(t, s) d s \tag{3}
\end{equation*}
$$

The function $g(t, x)$ is periodic in t of period T, it is also globally Lipschitz continuous in x. That is

$$
\begin{equation*}
g(t+T, x)=g(t, x) \tag{4}
\end{equation*}
$$

and there is positive constant E such that

$$
\begin{equation*}
|g(t, x)-g(t, y)| \leq E\|x-y\| \tag{5}
\end{equation*}
$$

The proof of the following lemma is close to the proof of Lemma 2.2 given in [13].

Lemma 2.1. Suppose (2)-(4) hold. If $x \in P_{T}$, then x is a solution of equation (1) if and only if

$$
\begin{align*}
x(t) & =-g(t, x(t-\tau(t)))-\left(1-e^{-\int_{t-T}^{t} A(z) d z}\right)^{-1} \\
& \times \int_{t-T}^{t}\left[L_{x}(s)-A(s) g(s, x(s-\tau(s)))\right] e^{-\int_{s}^{t} A(z) d z} d s \tag{6}
\end{align*}
$$

where

$$
\begin{align*}
L_{x}(t) & =\int_{t-\tau(t)}^{t} a(t, s) \int_{s}^{t}\left(\int_{u-\tau(u)}^{u} a(u, \nu) x(\nu) d \nu\right) d u d s \\
& +\int_{t-\tau(t)}^{t} a(t, s)(g(t, x(t-\tau(t)))-g(s, x(s-\tau(s)))) d s \tag{7}
\end{align*}
$$

Proof. Obviously, we have

$$
x(s)=x(t)-\int_{s}^{t} \frac{\partial}{\partial u} x(u) d u
$$

Inserting these relation into (1), we get

$$
\begin{aligned}
& \frac{d}{d t} x(t)+\int_{t-\tau(t)}^{t} a(t, s)\left(x(t)-\int_{s}^{t} \frac{\partial}{\partial u} x(u) d u\right) d s \\
& +\frac{d}{d t} g(t, x(t-\tau(t)))=0,
\end{aligned}
$$

or equivalently

$$
\begin{aligned}
& \frac{d}{d t} x(t)+x(t) \int_{t-\tau(t)}^{t} a(t, s) d s-\int_{t-\tau(t)}^{t} a(t, s)\left(\int_{s}^{t} \frac{\partial}{\partial u} x(u) d u\right) d s \\
& +\frac{d}{d t} g(t, x(t-\tau(t)))=0
\end{aligned}
$$

After substituting $\frac{\partial x}{\partial u}$ from (1), we obtain

$$
\begin{align*}
& \frac{d}{d t} x(t)+x(t) \int_{t-\tau(t)}^{t} a(t, s) d s+\frac{d}{d t} g(t, x(t-\tau(t))) \\
& +\int_{t-\tau(t)}^{t} a(t, s)\left(\int _ { s } ^ { t } \left(\int_{u-\tau(u)}^{u} a(u, \nu) x(\nu) d \nu\right.\right. \\
& \left.\left.+\frac{\partial}{\partial u} g(u, x(u-\tau(u)))\right) d u\right) d s=0 \tag{8}
\end{align*}
$$

By performing the integration, we have
(9)

$$
\int_{s}^{t} \frac{\partial}{\partial u} g(u, x(u-\tau(u))) d u=g(t, x(t-\tau(t)))-g(s, x(s-\tau(s)))
$$

Substituting (9) into (8), we have

$$
\frac{d}{d t} x(t)+A(t) x(t)+L_{x}(t)+\frac{d}{d t} g(t, x(t-\tau(t)))=0
$$

where A and L_{x} are given by (3) and (7), respectively. We rewrite this equation as

$$
\begin{align*}
& \frac{d}{d t}\{x(t)+g(t, x(t-\tau(t)))\} \\
& =-A(t)(x(t)+g(t, x(t-\tau(t)))) \\
& +A(t) g(t, x(t-\tau(t)))-L_{x}(t) \tag{10}
\end{align*}
$$

Multiply both sides of (10) with $e^{\int_{0}^{t} A(z) d z}$ and then integrate from $t-T$ to t to obtain

$$
\begin{aligned}
& \int_{t-T}^{t} \frac{d}{d s}\left[(x(s)+g(s, x(s-\tau(s)))) e^{\int_{0}^{s} A(z) d z}\right] d s \\
& =-\int_{t-T}^{t}\left[L_{x}(s)-A(s) g(s, x(s-\tau(s)))\right] e^{\int_{0}^{s} A(z) d z} d s
\end{aligned}
$$

As a consequence, we arrive at

$$
\begin{aligned}
& (x(t)+g(t, x(t-\tau(t)))) e^{\int_{0}^{t} A(z) d z} \\
& -(x(t-T)+g(t-T, x(t-T-\tau(t-T)))) e^{\int_{0}^{t-T} A(z) d z} \\
& =-\int_{t-T}^{t}\left[L_{x}(s)-A(s) g(s, x(s-\tau(s)))\right] e^{\int_{0}^{s} A(z) d z} d s
\end{aligned}
$$

Dividing both sides of the above equation by $e^{\int_{0}^{t} A(z) d z}$ and the fact that $x(t-T)=x(t)$, we obtain

$$
\begin{aligned}
& x(t)+g(t, x(t-\tau(t))) \\
& =-\left(1-e^{-\int_{t-T}^{t} A(z) d z}\right)^{-1} \\
& \times \int_{t-T}^{t}\left[L_{x}(s)-A(s) g(s, x(s-\tau(s)))\right] e^{-\int_{s}^{t} A(z) d z} d s
\end{aligned}
$$

Since each step is reversible, the converse follows easily. This completes the proof.

Define a mapping H by

$$
\begin{aligned}
(H \varphi)(t) & =-g(t, \varphi(t-\tau(t)))-\left(1-e^{-\int_{t-T}^{t} A(z) d z}\right)^{-1} \\
& \times \int_{t-T}^{t}\left[L_{\varphi}(s)-A(s) g(s, \varphi(s-\tau(s)))\right] e^{-\int_{s}^{t} A(z) d z} d s
\end{aligned}
$$

Since $a(t+T, s+T)=a(t, s)$ then A is T-periodic. It is clear from (11) that $H: P_{T} \rightarrow P_{T}$ by the way it was constructed in Lemma 2.1.

Next we state Krasnoselskii's fixed point theorem which enables us to prove the existence of a periodic solution. For the proof of Krasnoselskii's fixed point theorem we refer the reader to [32].

Theorem 2.2 (Krasnoselskii). Let M be a closed convex nonempty subset of a Banach space $(\mathbb{B},\|\|$.$) . Suppose that C$ and B map M into \mathbb{B} such that
(i) $x, y \in M$, implies $C x+B y \in M$,
(ii) C is continuous and $C M$ is contained in a compact set,
(iii) B is a contraction mapping.

Then there exists $z \in M$ with $z=C z+B z$.
We note that to apply the above theorem we need to construct two mappings; one is contraction and the other is compact. Therefore, we express (11) as

$$
(H \varphi)(t)=(B \varphi)(t)+(C \varphi)(t)
$$

where $C, B: P_{T} \rightarrow P_{T}$ are given by

$$
\begin{equation*}
(B \varphi)(t)=-g(t, \varphi(t-\tau(t))) \tag{12}
\end{equation*}
$$

and

$$
\begin{aligned}
(C \varphi)(t) & =-\left(1-e^{-\int_{t-T}^{t} A(z) d z}\right)^{-1} \\
& \times \int_{t-T}^{t}\left[L_{\varphi}(s)-A(s) g(s, \varphi(s-\tau(s)))\right] e^{-\int_{s}^{t} A(z) d z} d s
\end{aligned}
$$

To simplify notations, we introduce the following constants

$$
\begin{align*}
& \eta=\left(1-e^{-\int_{t-T}^{t} A(z) d z}\right)^{-1}, \gamma=\sup _{t \in[0, T]}\left(\sup _{s \in[t-T, t]} e^{-\int_{s}^{t} A(z) d z}\right) \\
& \rho=\sup _{t \in[0, T]}\left(\sup _{s \in[t-T, t]}\left(\int_{s-\tau(s)}^{s}|a(s, w)| d w\right)\right), \\
& \delta=\sup _{t \in[0, T]}\left(\sup _{s \in[t-T, t]}\left(\sup _{w \in[t-T, t]} \int_{w}^{s}\left(\int_{u-\tau(u)}^{u}|a(u, \nu)| d \nu\right) d u\right)\right) . \tag{14}
\end{align*}
$$

Lemma 2.3. Let C be given in (13). Suppose that (2)-(4) hold. Then $C: P_{T} \rightarrow P_{T}$ is continuous and the image of C contained in a compact set.

Proof. To see that C is continuous, we let $\varphi, \psi \in P_{T}$. Given $\epsilon>0$, take $\beta=\frac{\epsilon}{N}$ with $N=\eta \gamma T \rho(\delta+3 E)$ where E is given by (5). Now, for $\|\varphi-\psi\|<\beta$, we obtain

$$
\begin{aligned}
\|C \varphi-C \psi\| & \leq \eta \gamma \int_{t-T}^{t}[\rho \delta\|\varphi-\psi\|+3 \rho E\|\varphi-\psi\|] d s \\
& \leq N\|\varphi-\psi\|<\epsilon
\end{aligned}
$$

This proves that C is continuous. To show that the image of C is contained in a compact set, we consider $D=\left\{\varphi \in P_{T}:\|\varphi\| \leq R\right\}$, where R is a fixed positive constant. Let $\varphi \in D$. Observe that in view of (5) we have

$$
\begin{aligned}
|g(t, x)| & =|g(t, x)-g(t, 0)+g(t, 0)| \\
& \leq|g(t, x)-g(t, 0)|+|g(t, 0)| \\
& \leq E\|x\|+\alpha
\end{aligned}
$$

where $\alpha=\sup _{t \in[0, T]}|g(t, 0)|$. Consequently

$$
\begin{aligned}
|(C \varphi)(t)| & \leq \eta \gamma \int_{t-T}^{t}[\rho(\delta+2(E R+\alpha))+\rho(E R+\alpha)] d s \\
& \leq \eta \gamma T[\rho(\delta+3(E R+\alpha))]=L
\end{aligned}
$$

Next we calculate $(C \varphi)^{\prime}(t)$ and show that $C(D)$ is uniformly bounded. By making use of (2)-(4) we obtain by taking the derivative in (13) that

$$
\begin{aligned}
(C \varphi)^{\prime}(t) & =\left(1-e^{-\int_{t-T}^{t} A(z) d z}\right)^{-1} \\
& \times A(t) \int_{t-T}^{t}\left[L_{\varphi}(s)-A(s) g(s, \varphi(s-\tau(s)))\right] e^{-\int_{s}^{t} A(z) d z} d s \\
& -\left(1-e^{-\int_{t-T}^{t} A(z) d z}\right)^{-1}\left\{\left(L_{\varphi}(t)-A(t) g(t, \varphi(t-\tau(t)))\right)\right. \\
& \left(L_{\varphi}(t-T)-A(t-T)\right. \\
& \left.-\times g(t-T, \varphi(t-T-\tau(t-T)))) e^{-\int_{t-T}^{t} A(z) d z}\right\} \\
& =-A(t)(C \varphi)(t)-L_{\varphi}(t)+A(t) g(t, \varphi(t-\tau(t)))
\end{aligned}
$$

Thus, the above expression yields $\left\|(C \varphi)^{\prime}\right\| \leq F$, for some positive constant F. Thus $C(D)$ is uniformly bounded and equicontinuous. Hence
by Ascoli-Arzela's theorem $C(D)$ is relatively compact. Then, $C(D)$ is contained in a compact set.

Lemma 2.4. If B is given by (12) with $E<1$, then $B: P_{T} \rightarrow P_{T}$ is a contraction.

Proof. Let B be defined by (12). Then for $\varphi, \psi \in P_{T}$ we have

$$
\begin{aligned}
\|B \varphi-B \psi\| & =\sup _{t \in[0, T]}|(B \varphi)(t)-(B \psi)(t)| \\
& \leq E \sup _{t \in[0, T]}|\varphi(t-\tau(t))-\psi(t-\tau(t))| \\
& \leq E\|\varphi-\psi\|
\end{aligned}
$$

Hence B defines a contraction.
Our first result is based on Krasnoselskii's fixed point theorem.
Theorem 2.5. Suppose the hypothesis of Lemma 2.4. Let $\alpha=$ $\sup _{t \in[0, T]}|g(t, 0)|$. Suppose (2)-(5) hold. Let J be a positive constant satisfying the inequality

$$
\begin{equation*}
E J+\alpha+\eta \gamma T(\rho(\delta J+3(E J+\alpha))) \leq J \tag{15}
\end{equation*}
$$

Let $M=\left\{\varphi \in P_{T}:\|\varphi\| \leq J\right\}$. Then equation (1) has a solution in M.
Proof. By Lemma 2.3, $C: M \rightarrow P_{T}$ is continuous and $C(M)$ is contained in a compact set. Also, from Lemma 2.4, the mapping B : $M \rightarrow P_{T}$ is a contraction. Next, we show that if $\varphi, \psi \in M$, we have $\|C \varphi+B \psi\| \leq J$. Let $\varphi, \psi \in M$ with $\|\varphi\|,\|\psi\| \leq J$. Then

$$
\begin{aligned}
& \|C \varphi+B \psi\| \\
& \leq E\|\psi\|+\alpha+\eta \gamma \int_{t-T}^{t}[\rho(\delta\|\varphi\|+2(E\|\varphi\|+\alpha))+\rho(E\|\varphi\|+\alpha)] d s \\
& \leq E J+\alpha+\eta \gamma T(\rho(\delta J+3(E J+\alpha))) \leq J
\end{aligned}
$$

We now see that all the conditions of Krasnoselskii's theorem are satisfied. Thus there exists a fixed point z in M such that $z=C z+B z$. By Lemma 2.1, this fixed point is a solution of (1). Hence (1) has a T-periodic solution.

Our second result is based on Banach's fixed point theorem.
Theorem 2.6. Suppose (2)-(5) hold. If

$$
\begin{equation*}
E+\eta \gamma T \rho(\delta+3 E)<1 \tag{16}
\end{equation*}
$$

then equation (1) has a unique T-periodic solution.

Proof. Let the mapping H be given by (11). For $\varphi, \psi \in P_{T}$, in view of (11), we have

$$
\|H \varphi-H \psi\| \leq(E+\eta \gamma T \rho(\delta+3 E))\|\varphi-\psi\|
$$

This completes the proof by invoking the contraction mapping principle.

Remark 2.7. The condition (16) implies the condition (15).
Corollary 2.8. Suppose (2)-(4) hold and let α be the constant defined in Theorem 2.5. Let J be a positive constant and define $M=$ $\left\{\varphi \in P_{T}:\|\varphi\| \leq J\right\}$. Suppose there is positive constant E^{*} so that for $x, y \in M$ we have

$$
|g(t, x)-g(t, y)| \leq E^{*}\|x-y\|
$$

If $E^{*}<1$ and $\|H \varphi\| \leq J$ for $\varphi \in M$, then (1) has a T-periodic solution in M. Moreover, if

$$
E^{*}+\eta \gamma T \rho\left(\delta+3 E^{*}\right)<1
$$

then (1) has a unique T-periodic solution in M.

Proof. Let $M=\left\{\varphi \in P_{T}:\|\varphi\| \leq J\right\}$. Let the mapping H be given by (11). Then, the results follow immediately from Theorem 2.5 and Theorem 2.6

Example 2.9. For small positive ϵ_{1} and ϵ_{2} we consider the nonlinear neutral integro-differential equation with variable delay

$$
\begin{align*}
& \frac{d}{d t} x(t)+\epsilon_{1} \int_{t-\frac{\pi}{\omega}}^{t}(1+\cos \omega(t-s)) x(s) d s \\
& +\epsilon_{2} \frac{d}{d t}\left(\cos (\omega t) x^{3}\left(t-\frac{\pi}{\omega}\right)\right)=0 \tag{17}
\end{align*}
$$

where ω is a positive constant. So, we have $a(t, s)=\epsilon_{1}(1+\cos \omega(t-s))$, $\tau(t)=\frac{\pi}{\omega}, g(t, x(t-\tau(t)))=\epsilon_{2}\left(\cos (\omega t) x^{3}\left(t-\frac{\pi}{\omega}\right)+1\right)$. Define $M=$ $\left\{\varphi \in P_{\frac{2 \pi}{\omega}}:\|\varphi\| \leq J\right\}$, where J is a positive constant. For $\varphi \in M$, we
have

$$
\begin{aligned}
& |(H \varphi)(t)| \\
& =\mid-g(t, \varphi(t-\tau(t)))-\left(1-e^{-\int_{t-T}^{t} A(z) d z}\right)^{-1} \\
& \times \int_{t-T}^{t}\left[L_{\varphi}(s)-A(s) g(s, \varphi(s-\tau(s)))\right] e^{-\int_{s}^{t} A(z) d z} d s \mid \\
& \leq \epsilon_{2} J^{3}+\epsilon_{2}+\left(1-e^{\frac{-2 \epsilon_{1} \pi^{2}}{\omega^{2}}}\right)^{-1} \frac{4 \pi^{2}}{\omega^{2}} \epsilon_{1}\left(\frac{4 \epsilon_{1} \pi^{2}}{\omega^{2}} J+3 \epsilon_{2} J^{3}+3 \epsilon_{2}\right) .
\end{aligned}
$$

Thus, the inequality

$$
\begin{equation*}
\epsilon_{2} J^{3}+\epsilon_{2}+\left(1-e^{\frac{-2 \pi^{2} \epsilon_{1}}{\omega^{2}}}\right)^{-1} \frac{4 \pi^{2}}{\omega^{2}} \epsilon_{1}\left(\frac{4 \epsilon_{1} \pi^{2}}{\omega^{2}} J+3 \epsilon_{2} J^{3}+3 \epsilon_{2}\right) \leq J \tag{18}
\end{equation*}
$$

which is satisfied for small ω, ϵ_{1} and ϵ_{2}, implies $\|H \varphi\| \leq J$. Hence, (17) has a $\frac{2 \pi}{\omega}$-periodic solution, by Corollary 2.8 .

For the uniqueness of the solution we let $\varphi, \psi \in M$. From (17) we see that

$$
\eta=\left(1-e^{\frac{-2 \pi^{2} \epsilon_{1}}{\omega^{2}}}\right)^{-1}, \rho=\frac{2 \pi}{\omega} \epsilon_{1}, \gamma \leq 1
$$

Also $\alpha=\epsilon_{2}, E=3 \epsilon_{2} J^{2}$, where J is given by (18). If

$$
3 \epsilon_{2} J^{2}+\frac{4 \pi^{2} \epsilon_{1}}{\omega^{2}}\left(1-e^{\frac{-2 \pi^{2} \epsilon_{1}}{\omega^{2}}}\right)^{-1}\left[\frac{4 \epsilon_{1} \pi^{2}}{\omega^{2}}+9 \epsilon_{2} J^{2}\right]<1
$$

is satisfied for small ϵ_{1} and ϵ_{2}, then (17) has a unique $\frac{2 \pi}{\omega}$-periodic solution, by Corollary 2.8.

3. Existence of positive periodic solutions

For some non-negative constant L and a positive constant K, we define the set

$$
\mathcal{M}=\left\{\varphi \in P_{T}: L \leq \varphi \leq K\right\}
$$

which is a closed convex and bounded subset of the Banach space P_{T}.
In this section we obtain the existence of a positive periodic solution of (1) by considering the two cases; $g(t, x) \geq 0$ and $g(t, x) \leq 0$ for all $t \in \mathbb{R}, x \in \mathcal{M}$. To simplify notation, we let

$$
\theta=\max _{t \in[0, T]}\left(\max _{s \in[t-T, t]} e^{-\int_{s}^{t} A(z) d z}\right), \sigma=\min _{t \in[0, T]}\left(\min _{s \in[t-T, t]} e^{-\int_{s}^{t} A(z) d z}\right)
$$

In the case $g(t, x) \leq 0$, we assume that there exist a non-negative constant k_{1} and a positive constant k_{2} such that

$$
\begin{align*}
& k_{1} x \leq-g(t, x) \leq k_{2} x, \text { for all } t \in[0, T], x \in \mathcal{M} \tag{19}\\
& \qquad k_{2}<1 \tag{20}
\end{align*}
$$

and for all $t \in[0, T], x \in \mathcal{M}$

$$
\begin{equation*}
\frac{L\left(1-k_{1}\right)}{\eta \sigma T} \leq-L_{x}(t)+A(t) g(t, x) \leq \frac{K\left(1-k_{2}\right)}{\eta \theta T} \tag{21}
\end{equation*}
$$

Theorem 3.1. Suppose (2)-(5) and (19)-(21) hold. Then equation (1) has a positive T-periodic solution x in the subset \mathcal{M}.

Proof. By Lemma $2.1 x$ is a solution of (1) if

$$
x=C x+B x
$$

where C and B are given by (13), (12) respectively. By Lemma 2.3, $C: \mathcal{M} \rightarrow P_{T}$ is continuous and compact. Also, from Lemma 2.4, the mapping $B: \mathcal{M} \rightarrow P_{T}$ is a contraction. We just need to show that condition (i) of Theorem 2.2 is satisfied. Toward this, let $\varphi, \psi \in \mathcal{M}$, then

$$
\begin{aligned}
& (B \psi)(t)+(C \varphi)(t) \\
& =-g(t, \psi(t-\tau(t))) \\
& -\eta \int_{t-T}^{t}\left[L_{\varphi}(s)-A(s) g(s, \varphi(s-\tau(s)))\right] e^{-\int_{s}^{t} A(z) d z} d s \\
& \leq k_{2} K+\eta \theta T \frac{K\left(1-k_{2}\right)}{\eta \theta T} \leq K
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& (B \psi)(t)+(C \varphi)(t) \\
& =-g(t, \psi(t-\tau(t))) \\
& -\eta \int_{t-T}^{t}\left[L_{\varphi}(s)-A(s) g(s, \varphi(s-\tau(s)))\right] e^{-\int_{s}^{t} A(z) d z} d s \\
& \geq k_{1} L+\eta \sigma T \frac{L\left(1-k_{1}\right)}{\eta \sigma T} \geq L
\end{aligned}
$$

Clearly, all the hypotheses of the Krasnoselskii theorem are satisfied. Thus there exists a fixed point $x \in \mathcal{M}$ such that $x=B x+C x$. By Lemma 2.1 this fixed point is a solution of (1) and the proof is complete.

In the case $g(t, x) \geq 0$, we substitute conditions (19)-(21) with the following conditions respectively. We assume that there exist a negative constant k_{3} and a non-positive constant k_{4} such that

$$
\begin{gather*}
k_{3} x \leq-g(t, x) \leq k_{4} x, \text { for all } t \in[0, T], x \in \mathcal{M} \tag{22}\\
-k_{3}<1 \tag{23}
\end{gather*}
$$

and for all $t \in[0, T], x \in \mathcal{M}$

$$
\begin{equation*}
\frac{L-k_{3} K}{\eta \sigma T} \leq-L_{x}(t)+A(t) g(t, x) \leq \frac{K-k_{4} L}{\eta \theta T} \tag{24}
\end{equation*}
$$

Theorem 3.2. Suppose (2)-(5) and (22)-(24) hold. Then equation (1) has a positive T-periodic solution x in the subset \mathcal{M}.

The proof follows along the lines of Theorem 3.1, and hence we omit it.
Acknowledgment. The authors would like to thank the anonymous referee for his/her valuable comments and good advice.

References

[1] M. Adivar, M. N. Islam and Y. N. Raffoul, Separate contraction and existence of periodic solution in totally nonlinear delay differential equations, Hacettepe Journal of Mathematics and Statistics 41(1) (2012), 1-13.
[2] A. Ardjouni and A. Djoudi, Existence of positive periodic solutions for two types of second order nonlinear neutral differential equations with variable delay, Proyecciones J. Math. 32(4) (2013), 377-391.
[3] A. Ardjouni and A. Djoudi, Existence of periodic solutions in totally nonlinear neutral dynamic equations with variable delay on a time scale, Mathematics in Engineering, Science and Aerospace MESA 4(3) (2013), 305-318.
[4] A. Ardjouni and A. Djoudi, Existence of positive periodic solutions for two kinds of nonlinear neutral differential equations with variable delay, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Math. Anal. 20 (2013) 357366.
[5] A. Ardjouni and A. Djoudi, Existence of positive periodic solutions for nonlinear neutral dynamic equations with variable delay on a time scale, Malaya Journal of Matematik 2(1) (2013), 60-67.
[6] A. Ardjouni and A. Djoudi, Existence and positivity of solutions for a totally nonlinear neutral periodic differential equation, Miskolc Mathematical Notes 14(3) (2013), 757-768.
[7] A. Ardjouni and A. Djoudi, Existence of positive periodic solutions for a secondorder nonlinear neutral differential equation with variable delay, Adv. Nonlinear Anal. 2 (2013), 151-161.
[8] A. Ardjouni and A. Djoudi, Existence of periodic solutions for a second order nonlinear neutral differential equation with functional delay, Electronic Journal of Qualitative Theory of Differential Equation 2012(31) (2012), 1-9.
[9] A. Ardjouni and A. Djoudi, Existence of periodic solutions for totally nonlinear neutral differential equations with variable delay, Sarajevo J. Math. 8(1) (2012), 107-117.
[10] A. Ardjouni and A. Djoudi, Existence of positive periodic solutions for a nonlinear neutral differential equation with variable delay, Appl. Math. E-Notes 12 (2012), 94-101.
[11] A. Ardjouni and A. Djoudi, Periodic solution in totally nonlinear dynamic equations with functional delay on a time scale, Rend. Sem. Mat. Univ. Politec. Torino 68(4) (2010), 349-359.
[12] L. C. Becker and T. A. Burton, Stability, fixed points and inverse of delays, Proc. Roy. Soc. Edinburgh 136A (2006), 245-275.
[13] K. Bessioud, A. Ardjouni and A. Djoudi, Asymptotic stability in nonlinear neutral Levin-Nohel integro-differential equations, J. Nonlinear Funct. Anal. 2017(19) (2017), 1-12.
[14] T. A. Burton, Liapunov functionals, fixed points and stability by Krasnoselskii's theorem, Nonlinear Stud. 9(2) (2002), 181-190.
[15] T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, NewYork, 2006.
[16] T. A. Burton, A fixed point theorem of Krasnoselskii, App. Math. Lett. 11 (1998), 85-88.
[17] T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Academic Press. NY, 1985.
[18] F. Chen, Positive periodic solutions of neutral Lotka-Volterra system with feedback control, Appl. Math. Comput. 162(3) (2005), 1279-1302.
[19] H. Deham and A. Djoudi, Periodic solutions for nonlinear differential equation with functional delay, Georgian Mathematical Journal 15(4) (2008), 635-642.
[20] H. Deham and A. Djoudi, Existence of periodic solutions for neutral nonlinear differential equations with variable delay, Electronic Journal of Differential Equations 2010(127) (2017), 1-8.
[21] I. Derrardjia, A. Ardjouni and A. Djoudi, Stability by Krasnoselskii's theorem in totally nonlinear neutral differential equation, Opuscula Math. 33(2) (2013), 255-272.
[22] O. Diekmann, S. A. van Gils, S. M. V. Lunel and H. O. Walther, Delay Equations, Springer-Verlag, New York, 1995.
[23] N. T. Dung, Asymptotic behavior of linear advanved differential equations, Acta Mathematica Scientia 35B(3) (2015), 610-618.
[24] N. T. Dung, New stability conditions for mixed linear Levin-Nohel integrodifferential equations, Journal of Mathematical Physics 54 (2013), 1-11.
[25] M. Fan, K. Wang, P. J. Y. Wong and R. P. Agarwal, Periodicity and stability in periodic n-species Lotka-Volterra competition system with feedback controls and deviating arguments, Acta Math. Sin., Engl. Ser. 19(4) (2003), 801-822.
[26] A. Halanay, Differential Equations, New York: Academic Press, 1996.
[27] J. K. Hale, Theory of Functional Differential Equations, 2nd ed., Ser. Applied Mathematical Sciences, New York-Heidelberg-Berlin: Springer-Verlag, 1977.
[28] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Ser. Applied Mathematical Sciences, New York: Springer-Verlag, 1993.
[29] M. B. Mesmouli, A. Ardjouni and A. Djoudi, Study of the stability in nonlinear neutral differential equations with functional delay using Krasnoselskii-Burton's fixed-point, Applied Mathematics and Computation 243 (2014), 492-502.
[30] M. B. Mesmouli, A. Ardjouni and A. Djoudi, Stability in neutral nonlinear differential equations with functional delay using Krasnoselskii-Burton's fixed-point, Nonlinear Studies 21(4) (2014), 601-617.
[31] S. I. Niculescu, Delay Effects on Stability: A Robust Control Approach, Springer Science, Business Media, 2001.
[32] D. R. Smart, Fixed Point Theorems, Cambridge Tracts in Mathematics, No. 66. Cambridge University Press, London-New York, 1974.
[33] H. Smith, An Introduction to Delay Differential Equations With Applications to The Life Sciences, Springer, New York, 2011.
[34] C. Tunç and O. Tunç, A note on the qualitative analysis of Volterra integrodifferential equations, Journal of Taibah University for Science 13(1) (2019), 490-496.
[35] C. Tunç and O. Tunç, New results on the stability, integrability and boundedness in Volterra integro-differential equations, Bull. Comput. Appl. Math. 6(1) (2018), 41-58.
[36] C. Tunç and O. Tunç, On behaviors of functional Volterra integro-differential equations with multiple time-lags, Journal of Taibah University for Science 12(2) (2018), 173-179.
[37] C. Tunç and O. Tunç, New qualitative criteria for solutions of Volterra integrodifferential equations, Arab Journal of Basic and Applied Sciences 25(3) (2018), 158-165.
[38] V. Volterra, Sur la théorie mathématique des phénomès héréditaires, J. Math. Pures Appl. 7 (1928), 249-298.
[39] Y. Wang, H. Lian and W. Ge, Periodic solutions for a second order nonlinear functional differential equation, Applied Mathematics Letters 20 (2007) 110-115.
[40] E. Yankson, Existence and positivity of solutions for a nonlinear periodic differential equation, Arch. Math., Brno 48(4) (2012), 261-270.

Karima Bessioud

Department of Mathematics, Faculty of Sciences, University of Annaba, P.O. Box 12, Annaba 23000, Algeria.

E-mail: karima_bess@yahoo.fr

Abdelouaheb Ardjouni
Department of Mathematics and Informatics, University of Souk Ahras, P.O. Box 1553, Souk Ahras, 41000, Algeria.
Applied Mathematics Lab, Department of Mathematics, Faculty of Sciences, University of Annaba, P.O. Box 12, Annaba 23000, Algeria.
E-mail: abd_ardjouni@yahoo.fr

Ahcene Djoudi
Applied Mathematics Lab, Department of Mathematics, Faculty of Sciences, University of Annaba, P.O. Box 12, Annaba 23000, Algeria.

E-mail: adjoudi@yahoo.com

[^0]: Received February 21, 2020. Revised October 1, 2020. Accepted October 1, 2020. 2010 Mathematics Subject Classification. 34K20, 45J05, 45D05.
 Key words and phrases. Fixed points, periodicity, positivity, Levin-Nohel integrodifferential equations, functional delay.
 *Corresponding author

